
          
P1: KKK/PSA/SPD P2: PSA/ARY QC: PSA

November 16, 1998 19:3 Annual Reviews AR075-15

Annu. Rev. Fluid Mech. 1999. 31:537–66
Copyright c© 1999 by Annual Reviews. All rights reserved

COLLAPSE, SYMMETRY
BREAKING, AND HYSTERESIS
IN SWIRLING FLOWS

Vladimir Shtern and Fazle Hussain
Department of Mechanical Engineering, University of Houston, Houston, Texas
77204-4792; e-mail: mece21w@jetson.uh.edu

KEY WORDS: swirl accumulation, vortex breakdown, fold catastrophe, axisymmetry breaking,
conical similarity solutions

ABSTRACT

The paper reviews striking features of swirling flows—collapse, swirl genera-
tion, vortex breakdown, hysteresis, and axisymmetry breaking—and the mecha-
nisms involved with the help of conical similarity solutions of the Navier-Stokes
equations. The strong accumulation of axial and angular momenta, observed in
tornadoes and flows over delta wings, corresponds to collapse, i.e. the singular-
ity development in these solutions. Bifurcation of swirl explains the threshold
character of swirl development in capillary and electrovortex flows. Analytical
solutions for fold catastrophes and hysteresis reveal why there are so few stable
states and why the jump transitions between the states occur—features typical of
tornadoes, of flows over delta wings, and in vortex devices. Finally, the divergent
instability explains such effects as the splitting of a tornado and the development
of spiral branches in tree and near-wall swirling flows.

1. INTRODUCTION

Of the many unresolved features of swirling flows, we review a few that seem
the most striking: collapse, swirl generation, vortex breakdown, hysteresis, and
axisymmetry breaking.

Collapse corresponds to an accumulation of swirl, which occurs in cosmic
jets (Lada 1985), in tornadoes (Davies-Jones 1983), on delta wings of aircraft
(Menke & Gursul 1997), and even in liquid menisci of electrosprays. Strong ac-
cumulation of angular and axial momenta sometimes manifests as a singularity
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development (collapse) and a loss of solution in mathematical models of these
flows (Section 2).

Swirl generation, discussed in Section 3, seems at first glance to contradict
conservation of angular momentum. However, there are examples in everyday
life of swirl development without any obvious forcing, e.g. the whirlpool in
a bath sink. Whether the bathtub vortex occurs due to symmetry breaking or
external forcing has been widely discussed but not resolved (e.g. see Ogawa
1992). Rotation appears as the speed of a swirl-free flow exceeds some threshold
in many experimental studies, for example sink flow in a rectangular container
(Kawakubo et al 1978), free convection in a sealed cylinder (Torrance 1979), a
horizontally oscillating glass of water (Funakoshi & Inoue 1988), an electrically
driven flow of mercury in a cup (Bojarevics et al 1989), and the Taylor menisci
(Fernandez de la Mora et al 1991).

Vortex breakdown is an abrupt change in the core of a slender vortex and
typically develops downstream into a recirculatory “bubble” or a helical pattern.
Vortex breakdown is observed in both open flows (e.g. tornadoes and over delta
wings) and confined flows (e.g. in cylindrical containers). Despite four decades
of extensive studies, there is no consensus on the notion of vortex breakdown,
let alone its mechanism (Section 4). A recent view is that vortex breakdown is
a fold catastrophe that causes a sudden transition to a different flow state.

Hysteresis and the corresponding finite-amplitude instability are typical of
swirling flows, occurring in tornadoes (Burggraf & Foster 1977), above delta-
wing aircraft (Lowson 1964), in diverging tubes (Sarpkaya 1971), and in vortex
chambers (Goldshtik 1990). If two (or more) stable flow states exist for the
same conditions, a finite-amplitude disturbance can cause switching between
them. A gradual increase or decrease of control parameters can also cause
jumps (Section 5). Such jumps are difficult to predict and can be dangerous
(e.g. for aircraft).

Axisymmetry breaking is also of fundamental and practical interest, e.g.
the splitting of tornadoes and the transformation of an upstream axisymmet-
ric flow into one- or multihelix patterns through helical vortex breakdown
(Sarpkaya 1971). Typically observed when a swirling flow diverges and decel-
erates, axisymmetry breaking can also occur in a converging flow (Section 6).

In contrast to the above-discussed features, which involve purely inertial
mechanisms, the Ranque effect—separation of an isothermal fluid into hot and
cold streams—typically involves compressibility (Fulton 1950). A recently
discovered enigmatic phenomenon of swirling flows is “antidiffusion”: Small
particles, initially uniformly distributed in a fluid, leave some (odd-shaped)
regions as rotation starts (Husain et al 1995). This review does not address the
Ranque and antidiffusion effects, but focuses on single-phase incompressible
flows.
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Although these striking features have been observed in natural and techno-
logical flows as well as studied in laboratory experiments, they are far from
being well understood. The main difficulties are the large number of control
parameters involved and the sensitivity of the swirling flow to external distur-
bances. Direct numerical simulations (DNS) of the Navier-Stokes equations
(NSE) are subject to the same problems, in addition to technical difficulties as-
sociated with complex flows and boundary conditions. In addressing such com-
plex flows, the physical and numerical experiments often include simple models
to interpret the observed effects and to explain their mechanisms. Similarity so-
lutions, being mathematical tools for such simplification, help to achieve these
goals.

Analytical solutions and semi-analytical methods [which reduce NSE to or-
dinary differential equations (ODE)] retain the key features of practical flows
while omitting secondary features. Flows are typically oblivious of fine details
of boundaries, but depend strongly on invariant characteristics such as the flow
force and circulation. These two facts together justify, and help obtain, similar-
ity solutions for these flows. The similarity approach also allows us to study the
spatiotemporal nonlinear development of (nonsimilar) growing disturbances
(Section 7).

There are two broad classes of similarity solutions of NSE—the von K´armán
and conical flows—that retain both convective and diffusion terms in ODE.
These nonlinear ODE allow description of many important features of practical
flows, including development of boundary layers, inner viscous layers, flow
separation, as well as the phenomena discussed in this paper. Zanderbergen &
Dijkstra (1987) and Goldshtik & Yavorsky (1989) reviewed many interesting
effects of the von K´armán class, such as multilayer flows between disks, solution
nonuniqueness, and swirl bifurcation. However, the von K´armán similarity, in
which the swirl velocity is proportional to the distance from the axis, is limited
to axisymmetric flows.

In this review, we focus on conical flows wherein velocity is inversely pro-
portional to the distance from the axis and can depend on the azimuthal angle as
well. The striking physical effects discussed above correspond to paradoxical
features of their mathematical models. For example, collapse corresponds to
the development of a singularity and loss of solution (discussed in Section 2).

2. COLLAPSE

Taylor (1950) considered interaction of a half-line vortex of circulation0d with
a normal no-slip plane (endwall) to model a swirl atomizer of a liquid fuel. He
found that near the endwall, a converging jet develops that is crucial for the
device because practically all the fuel flows near the wall. To obtain a boundary
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layer solution describing the jet, Taylor conjectured that boundary layers for
the radial and swirl velocities have the same thickness; Cooke (1952) obtained
another solution free from this limitation.

The wall jet is driven by the radial pressure gradient; in swirling flows,
pressure increases from the axis to the periphery to balance the centrifugal
force. Near a normal wall (where swirl is suppressed by the no-slip condition),
this pressure gradient induces a radial jet (directed to the axis). Such a wall effect
is highly undesirable in vortex technology, because particles (say of catalyst or
nuclear fuel) held in rotation inside the chamber by centrifugal forces can be
transported by the wall jet to the central orifice and lost.

Goldshtik (1960) tackled this effect while developing a vortex nuclear reactor,
reconsidered the vortex-wall problem using the full NSE, and obtained results,
in some sense contradictory to Taylor’s and Cooke’s solutions, as explained
below.

The problem has a conical similarity with

vr = −νψ ′(x)/r, vθ = −νψ(x)/(r sinθ), vφ = ν0(x)/(r sinθ),

p = p∞ + ρν2q(x)/r 2, 9 = νrψ(x), x = cosθ, (1)

where(r, θ, φ) are the spherical coordinates (Figure 1),(vr, vθ , vφ) are the
velocity components,p is the pressure,9 is the Stokes stream function,ρ is
the fluid density, andν is the kinematic viscosity. The only control parameter
is the swirl Reynolds number,Res = 0d/ν.

Goldshtik discovered and proved the following surprising feature: The simi-
larity solution exists forRes < 4< Reco, but not forRes > 8> Reco. Guilloud

Figure 1 Schematic of the vortex-wall problem.0d is the vortex circulation andFz is the force
along the z-axis.
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et al (1973) calculated the exact collapse value:Reco = 5.53. The boundary
layer approach, applicable forRes → ∞, seems invalid because there is no
solution for Res > Reco. The reason for the solution loss is the development
of a singularity on the axis asRes→ Reco—a paradoxical effect for a viscous
fluid. One would expect singularities to appear in the limit as Reynolds number
goes to infinity, but not at a finiteRes. The Goldshtik paradoxical example is
not unique: Similar collapses of solutions have been found in Marangoni con-
vection (Bratukhin & Maurin 1967), electro-vortex flows (Sozou 1971), and
thermal convection (Goldshtik & Shtern 1993).

Serrin (1972) applied the vortex-wall model to tornadoes. To avoid collapse,
he generalized the problem by introducing an additional source of motion—
forceFz = 4πρν2r−1A acting along the axis, whereA is a dimensionless char-
acteristic of the force. Figure 1 is a schematic of the line vortex and a typical
streamline. Figure 2 is a map of the flow patterns (the insets show the merid-
ional motion) on the parameter plane(k = Res/2, P = 1+ 4ARe−2

s ). Serrin
found that the solution exists for arbitrarily largeRes, providedA is properly
chosen. However, the collapse paradox remains unresolved because such a
solution describes descending flow (inset A) or two-cell flow (B), but not as-
cending flow (C ): There is no solution to the right of curveF and lineCo in

Figure 2 Map of solutions for the vortex-wall problem. Solution is unique above lineCo while
belowCo there are two solutions to the left of fold curveF and no solution to the right ofF. Insets
A, B, andC show the patterns of the meridional motion in the regions separated by curves0 and1.
BelowCo, the region B is twofold: the region between curves0 andF, and the region betweenCo
andF.
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Figure 2. Serrin mentioned that he had failed to prove the uniqueness theorem.
Goldshtik & Shtern (1990) showed that the solution is indeed nonunique:F
is a fold curve where two regular solutions merge and disappear (discussed in
Section 5), whereas collapse occurs along lineCo, k−2 = 0.131P. Thus, there
are two different mechanisms of the solution loss—collapse and fold—and only
one (collapse) corresponds to the singularity development.

The physical reason why collapse can occur only in the ascending flow is that
such a flow converges toward the axis, transports axial and angular momenta,
and dominates the opposing action of viscous diffusion whenRes is large. As
a result, swirl becomes locked along the axis (with no swirl outside), where the
axial velocity increases. Thus, the vortex-wall interaction causes self-focusing
of swirl and formation of a strong ascending jet—features typical of tornadoes.
One expects the accumulation to develop asymptotically asRes→ ∞, while
surprisingly, the singularity occurs at finiteRes.

This paradox disappears if the flow domain does not include the axis, e.g.
when the force and circulation, given on the surface of a narrow cone, induce a
flow between the cone and the wall (Goldshtik & Shtern 1990). In such flows
as well as in two-cell flows shown ininset B, Figure 2, a near-wall boundary
layer develops asRes→∞; this converging jet develops in a manner similar to
that predicted by Taylor. However, in contrast to the Taylor (1950) and Cooke
(1952) solutions, no boundary layer for swirl exists near the wall because the
meridional flow “locks” swirl along the cone.

In the vortex-wall model, a line vortex is located on the axis, i.e. there is
a singularity in the problem formulation. However, collapse also occurs in
thermal convection and in electro-vortex flows where no singularity is imposed
on the axis. The solution for the Marangoni convection coincides with that
obtained by Yatseev (1950) and Squire (1952):

ψ = 2α(1− x)[(1+ x)n− (1+ xc)
n]/[a− (1+ x)n] for C < 1/2,

(2a)

ψ = (1− x)/{2/ ln[(1+ x)/(1+ xc)] − 1} for C = 1/2,

(2b)

ψ = 2C(1− x)/{ω cot(1/2ω ln[(1+ x)/(1+ xc)])− 1} for C > 1/2.

(2c)

Hereα = (1+ n)/2,a = (1+ xc)
n(1+ n)/(1− n), ω = in, n = (1− 2C)1/2,

and Re = −C(1− xc)/(1+ xc), where Reynolds numberRe = r vrc/ν =
−ψ ′(xc) is based on the radial velocity at the conical surfacex = xc (xc = 0
for the plane).
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Equation 2 explicitly shows the mathematical reason for the collapse: The
denominator in Equation 2c becomes zero at a certainRe= Reco < 0, Re=
−Re(a negativeRecorresponds to flow convergence near the surface, hence
Reis positive). This solution has a number of applications although, initially,
its physical interpretation encountered some difficulties. Yatseev supposed that
Equation 2 had no physical meaning. Squire interpreted this equation, for the
particular casexc = 0, as a jet emerging normal to a plane wall, but Schneider
et al (1987, see also references therein) found that Squire’s interpretation is
wrong. Relevant applications of Equation 2 are flows driven by shear stresses
on a nonrigid boundary. An example is the Marangoni convection (Bratukhin
& Maurin 1967). Wang (1991) used Equation 2 withRe> 0 to model a flow
driven by oil spreading on the ocean surface after an oil spill. Shtern & Barrero
(1995) applied the equation for a flow inside conical menisci of electrosprays.

There are also other applications of Equation 2. One can imagine a water
film flowing on a horizontal plane toward a sinkhole and forcing a converging
motion of air above. If the sinkhole is filled with water, air must turn upward and
develop into a vertical jet above the hole, a motion that can be modeled by this
equation. An analogous and more interesting application is in modeling cosmic
jets, where the highly dense matter of accretion disks acts as the water film while
a low-density ambient gas behaves like the air (Goldshtik & Shtern 1993). When
there is a vortex-sink of water, the air motion becomes swirling. Goldshtik
(1979) and Yih et al (1982) generalized Equation 2 for such swirling flows
where circulation is also given on the surfacex = xc. Collapse occurs in these
solutions as well, andReco increases with swirl (Goldshtik & Shtern 1990).

Thus, collapse atRe= Reco corresponds to a clear physical process: the
strong accumulation of the axial and angular momenta. However, in practical
flows, Recan be larger thanReco; this requires interpretation by mathematical
modeling. One scenario is that the corresponding solution becomes unstable
for Re< Reco, resulting in bifurcation into new solutions that exist also for
Re> Reco. We show examples of such instability and bifurcation in Sections
3 and 6.

An alternative scenario of fundamental interest is the change in the velocity
dependence onr . Collapse occurs in solutions for an unbounded flow region.
In a confined, viscous flow, with a finite velocity given at its boundary, no sin-
gularity can occur inside the region. Consider a source of motion of dimension
r i (r i can be the nozzle radius) and a flow region of dimensionro (ro can be the
distance from the nozzle to a wall). A similarity solution can approximate such
a flow only in some ranger i < r < ro. For example, far from a nozzle and a
wall, both the mean and fluctuating velocities have conical similarity, v∼ 1/r ,
in turbulent jets (Wygnanski & Fiedler 1969). Schlichting (1933) or Landau
(1944) solutions can model the mean velocity of such a flow. [These solutions
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exist at arbitrarily largeRe, but differ (even in the limitRe→∞) from invis-
cid jets, where velocity isr -independent. Goldshtik (private communication)
pointed out that this difference in ther -dependence of the viscous and inviscid
jets needs to be explained.]

Consider a steady axisymmetric flow describing the Marangoni convection
induced by a small heat sink located at the center of the free surface of a liquid in
a hemispherical container. The solution described by Equation 2 approximates
this flow for Re< Reco, but does not exist forRe> Reco. How do features of
the bounded flow change asRepassesReco? One possibility is that the flow
has no similarity region forRe> Reco. Another is that two similarity regions
exist having different power laws: v∼ r−n with n = 1 outside the vicinity
of the axis andn < 1 inside. AsReco → ∞, n can tend to zero, providing
a smooth transition from the viscous to inviscid solutions. A similar problem,
concerning the similarity and bounded-region solutions, appears in electro-
vortex flows (Bojarevics et al 1989). Note that in contrast to NSE, the boundary
layer equations admit similarity solutions withn 6= 1 (e.g. see Fern´andez-Feria
et al 1995). It would be instructive to obtain a steady axisymmetric solution in
a bounded region (using DNS) and to investigate its features asRe increases.
Bojarevics et al (1989) did such calculations and found that the bounded-region
and similarity solutions are alike for moderateRe; the flow features for largeRe
remain unresolved. This scenario and ther -dependence require further study
(Section 8 lists some unresolved problems).

3. SWIRL GENERATION

The collapse paradox—loss of solution atRe= Reco—is overcome if we con-
sider bifurcation of new solutions forRe< Reco. We treat here instabilities
leading to bifurcations: (a) appearance of swirl in swirl-free flows, (b) hydro-
magnetic dynamo, and (c) axisymmetry breaking. Among these effects, (a)
(“swirl dynamo”) seems the most intriguing, since it appears to violate conser-
vation of angular momentum. For (a) to occur, either a separation mechanism
of angular momentum or swirl-source activation must come into play at criti-
cal values of control parameters. Both these mechanisms occur under certain
conditions.

The separation takes place owing to growing disturbances, which generate
clockwise and counterclockwise swirls in different flow regions with zero net
(volume integrated) value of the angular momentum. A part of the momentum
diffuses to infinity or to a wall, and thus the compensating momentum ap-
pears nonzero in a secondary flow state resulting from the instability. Goldshtik
et al (1984) found such a mechanism in a submerged, round jet with a top-
hat velocity profile. For supercritical Reynolds numbers (Re> Recr), grow-
ing helical oscillations of the azimuthal wavenumberm = ±1 (Batchelor &
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Gill 1962) generate opposite swirls near the jet axis and the periphery. After
the nonlinear saturation of these disturbances, the secondary state has a net
angular momentum, which can be clockwise or counterclockwise depending
on initial conditions. A serious limitation of the round jet case is the paral-
lel flow approximation used for studying stability and bifurcation. Whether
such a self-rotation phenomenon would occur in real nonparallel jets remains
unclear.

Sagalakov & Yudintsev (1992) considered another flow, which is free of this
drawback. An electrically conducting fluid moves in an annular pipe in the
presence of an axial magnetic field. While bifurcation of oscillatory solutions
is subcritical in nonmagnetic channel flows, a sufficiently strong magnetic field
makes bifurcation supercritical. Again forRe> Recr, two growing helical os-
cillations exist, which saturate to one of two stable states with the time-mean
swirl having opposite directions near the inner and outer walls. The net angular
momentum of the secondary flow is not zero, because the pipe absorbs the com-
pensating momentum during the saturation process. The separation mechanism
of such a swirl generation is rather sophisticated in that it involves two three-
dimensional time-dependent disturbances and three secondary flow states: two
with opposite signs of swirl and a swirl-free oscillatory solution, which is un-
stable. The time-mean secondary state includes counterrotation, which results
from diffusion of the angular momentum to ambient space or to the walls, and
the nonlinear effect of helical oscillations.

The second mechanism—swirl-source activation—also requires thorough
physical interpretation, but its mathematical model is simpler than that for the
separation mechanism. Also, the secondary states are simpler, having no coun-
terrotation and being steady and axisymmetric, similar to the primary, swirl-free
flow. The axisymmetry indeed posed some difficulty in the finding and inter-
preting the swirl bifurcation. In axisymmetric flows, there are strong constraints
for the self-generation of swirl and magnetic field (swirl and hydromagnetic dy-
namo are analogous in both their mechanism and formalism). These constraints
follow from the Cowling-Braginsky theorem: The axisymmetric hydromagnetic
dynamo cannot occur.

Cowling’s proof (1934) is based on clear physical reasons for secondary
states with closed magnetic lines. Braginsky (1964) proposed a different (more
formal) proof, using the requirement that magnetic induction decays asr−3

or faster asr →∞. A similar “antidynamo” theorem can be proved easily
for swirl generation as well. However, both conditions—the fast decay and the
closed lines—are invalid for conical flows, where magnetic and stream lines are
open, and magnetic induction and velocity are proportional tor−1. Therefore,
bifurcation of swirl and magnetic field in conical flows does not contradict the
antidynamo theorem. Moreover, it can be proved that such a bifurcation must
occur under certain conditions, as explained below.
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The simplest (physically and mathematically) case is bifurcation of swirl in
liquid cones. Zeleny (1917) found that the meniscus of a conducting liquid at
the exit of a capillary tube takes a conical shape when the liquid is charged to a
sufficiently high voltage. Taylor (1964) explained that this shape results from
the balance between the electrical pressure and surface tension effects when the
liquid is at rest. Very near the cone apex, the liquid surface breaks and a thin
jet or spray erupts whose diameter may be more than a thousand times smaller
than the inner diameter of the capillary tube (Fern´andez de la Mora 1992). In
recent years, this phenomenon has drawn wide attention because of a rapidly
growing area of electrospray applications—from spray painting and jet printing
to fuel atomization and biotechnology (Bailey 1988, Fenn et al 1989). As a
result, striking new features have been revealed.

In contrast to earlier conjectures that the flow inside the cone is always uni-
directional, experiments have revealed a circulatory meridional motion (Hayati
et al 1986). For liquids of small conductivity and viscosity, this circulation
is driven by electrically induced surface stressesτθ r = ε0EθEr. Hereε0 is the
vacuum permittivity, while Eθ and Er are the normal and tangential components
of the electric field at the liquid surface, respectively. As the voltage increases
up to 5.5 kV, swirl appears and becomes so strong that a kind of microtornado
develops within the tiny (1 mm) meniscus. A microscope reveals how this tor-
nado undergoes vortex breakdown: First, a recirculatory bubble appears; it
then expands upstream and downstream and assumes a conical form (Shtern
& Barrero 1995). A simple similarity model predicts both the swirl generation
and the development of the recirculatory zone.

In the linear stability problem for swirl disturbances of conical flows, the
equation for circulation0 reduces to(1− x2)0′′ = ψ0′, whereψ is given by
Equation 2. Integrating twice and using the normalization0(xc) = 1 and the
boundary condition that the swirl shear stress is zero (i.e.τθφ = 0) at the cone
surface,x = xc, yields the relation

0(1) ≡ 01 = 1− 2xc
(
1− x2

c

)−2
∫

U−2dx, (3)

where the integration is fromxc to 1; and the functionU (x), lying in the range
0< U (1) ≤ U ≤ U (xc) = 1, depends only onψ . As Re→ Reco,U (1) tends
to 0.

For bifurcation to occur,01 must be zero. It is evident from Equation 3 that
01 > 0 forxc ≤ 0, and therefore the swirl dynamo is impossible for a cone angle
θc ≥ 90◦. At Re= 0,U ≡ 1 and Equation 3 yields01 = (1−xc)/(1+xc) > 0.
Therefore, the dynamo cannot occur in a slow flow. On the other hand, asRe
approachesReco, the integral in Equation 3 tends to infinity and01 is negative.
Since01 is a continuous function ofRe, there must be a specificRe= Recr, at
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Figure 3 (a) The pitchfork bifurcation of swirl (curves1 and2) and the leading eigenvaluesα+00
andα−00 versus Reynolds numberRe for the electrospray flow.Insetssketch the primary and
secondary flows. (b) Schematic of the angular momentum fluxes (right-hand side) and of the radial
vorticity distribution (left-hand side).

which01 = 0 and the swirling flows bifurcate. Calculations yield, for example,
Recr = 6.3 for xc = 0.707 (i.e. for the cone angleθc = 45◦). This proof of
swirl bifurcation explains the threshold character of the swirl appearance in the
experiment.

Bifurcation study (Shtern & Barrero 1995) and analysis of instabilities to
steady and slowly time-varying disturbances (Shtern & Hussain 1998) illumi-
nate the mechanism of swirl accumulation. Figure 3a shows the results ob-
tained for the flow of heptane inside, and air outside, theθc = 45◦ meniscus
(Figure 3b). In Figure 3a, α is the spatial growth rate of disturbances, which
are proportional to exp(αr ), and0c = 0(xc). Only the modes of smallest|α|
are plotted: the curvesα+00 andα−00. Note that positiveα+00 indicates that the
corresponding outer disturbance (i.e. introduced far away from the cone tip)
decays asr decreases for smallRe. The disturbance grows forRe> Recr
whereα+00 < 0. Line1 and curve2 correspond respectively to the primary and
secondary flow states and illustrate the supercritical pitchfork bifurcation. The
crossing of the lineα = 0 and the curveα+00 indicates instability, resulting in
the appearance of swirl.

To explain the mechanism of swirl accumulation, consider the balance of
angular momentum for a small, near-interface element of liquid, denoted by
the rectangle in Figure 3b. SymbolC marks convection of angular momentum
along a streamline, where circulation would be constant in an inviscid fluid. As
the streamline approaches the axis, the swirl velocity and the radial vorticity
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ωr grow. A typical dependence of the radial vorticity on the polar angleθ

(for fixed r ) is shown on the left-hand side of Figure 3b. The sharp peak of
vorticity on the axis causes viscous diffusion and hence the angular momentum
transfer across streamlines from the axis to the interface (Dθ in Figure 3b),
resulting in an increase in circulation of the liquid element. The diffusion
fluxes in the radial direction,Dr, and from the liquid to the gas,Dg

θ , decrease
circulation of the liquid element. The stability calculations forRe < Recr
show that the losses,Dr + Dg

θ , exceed the gain,Dθ (as expected for lowRe),
and therefore0c decreases with decreasingr . However, forRe> Recr, Dθ

dominatesDr+ Dg
θ , and0c increases asr decreases, until nonlinear saturation.

Saturation results from the centrifugal action of a strong swirl that pushes
streamlines away from the axis, whereupon the vorticity decreases along the
axis. Therefore,Dθ decreases; it reaches a new balance withDr + Dg

θ ; this
balance corresponds to the secondary similarity regime.

The loss of the angular momentum owing to the radial diffusion through
the surface,r = const, increases with the cone angle,θc. In contrast, asθc

increases,d0/dθ andDθ decrease; the resulting dominance of losses explains
the absence of swirl bifurcation for largeθc (for θc ≥ 90◦ as theory shows).
A large liquid/gas density ratio causes the gas flow to contribute very little to
the angular momentum. Therefore, the value of the angle formed by the liquid
surface is the only crucial parameter for instability. However, ifθc is very small,
streamlines are nearly parallel to the axis; this decreases the accumulation effect.
Thus Recr reaches its minimum at an intermediateθc value (nearθc = 45◦

sketched in Figure 3).
Circulation must reach its maximum at the boundary of the flow region for an

incompressible fluid with uniform physical properties. This maximum is at the
meniscus surface, which is indeed the flow boundary for the single-phase flow.
However, the maximum principle is not applicable to a fluid whose properties
change in space, and the circulation maximum is located inside the region in
the two-phase flow. Another example is the single-phase flow of fluid with
variable viscosity (Goldshtik & Shtern 1993), where circulation maximum is
located inside the region and swirl bifurcation occurs forθc ≥ 90◦ as well. Thus,
a proper stratification of density and viscosity can enhance swirl generation.

The mechanism of the axisymmetric hydromagnetic dynamo (i.e. the appear-
ance of magnetic field due to instability) is similar to that of swirl bifurcation
but involves one more important effect: generation of electric current that en-
hances the instability. Consider a magnetic field perturbation, directed along the
axis, and a coaxial toroidal liquid element remote from the axis. A converging
flow transports the element toward the axis, crossing magnetic lines and thus
generating an azimuthal electric current. This current in turn induces a merid-
ional magnetic field having the same direction near the axis as the original field;
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Figure 4 Intensity of the magnetic field,Al, vs the Reynolds numberRe for the hydromagnetic
dynamo. As circulation00 increases (see numbers near the curves), bifurcation transforms from
super- to subcritical.Insetshows a typical magnetic line (dashed) and streamlines of the meridional
motion.

such a positive feedback enhances the hydromagnetic instability. This effect
explains why, in contrast to the swirl bifurcation, the hydromagnetic dynamo
does not have theθc < 90◦ limitation. This difference is important for applica-
tion of the model to the development of basically axisymmetric magnetic fields
of stars (Goldshtik & Shtern 1993).

Also of interest is the influence of swirl on the magnetic field generation.
Figure 4 shows the variation of Alfven numberAl with Refor different values of
the circulation00 = 0(0); Al is the magnetic/kinetic energy ratio on the equa-
torial plane,x = 0 (this ratio is the same everywhere on the plane). The inset
shows a magnetic line (dashed) and typical streamlines (solid) of the meridional
flow induced by a vortex sink at the plane,x = 0. Bifurcation of magnetic field
is supercritical for small00 (e.g.00 = 1, Figure 4) but subcritical for large00

(e.g.00 = 10). Therefore, in flows with strong swirl, the magnetic field can
appear and disappear through jumps asRerespectively increases and decreases,
i.e. hysteresis occurs.

A common feature of the swirl and magnetic field bifurcations is that there is
a remote source of swirl or magnetic field, which does not affect the similarity
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region for subcriticalRebut causes the accumulation effect for supercriticalRe.
It is worth noting that the swirl and magnetic field intensity in the secondary
state does not depend on, and can be drastically larger than, the source strength.
Another common feature is that both the effects occur in flows converging
toward the axis of symmetry. While it is not too surprising that a converging
flow accumulates swirl and magnetic fields, the threshold character of this effect
is nontrivial. This result is in agreement with observations of swirl generation
in menisci of electrosprays and in electro-vortex flows. For example, flow of
mercury in a hemispherical container forced by the electric currentI < 15 A
is swirl-free, but becomes swirling forI > 15 A (Bojarevics et al 1989).

The swirl accumulation causes the pressure in the vortex core to be signifi-
cantly less than the ambient pressure. If a swirling flow is directed against the
pressure gradient, the pressure recovery can trigger another interesting effect—
vortex breakdown.

4. VORTEX BREAKDOWN

Owing to the enormous extent of work in this area (see reviews by Hall 1972,
Leibovich 1978, Escudier 1987, and Althaus et al 1995), we discuss only key
issues and restrict our attention to recent studies. Most of the applications
of vortex breakdown (as well as its discovery by Peckam & Atkinson 1957)
concern flows over delta wings of aircraft. The upper part of Figure 5 (from
flow visualization by Werle 1963) shows the formation of the vortex core above
a delta wing (white strips). Experiments (Earnshow 1961) reveal that the core is
an intense, swirling jet with a sharp peak in the longitudinal velocity, resulting
from the focusing of longitudinal momentum and swirl in the roll-up process.

This mechanism is similar to collapse (Section 2) and swirl dynamo
(Section 3): Flow separation at the leading edge provides a source of vor-
ticity, which accumulates in the core. The lower part of Figure 5 models this

Figure 5 Formation of the delta-wing vortex (above, Werle 1963) and its model (Shtern et al
1997).

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
9.

31
:5

37
-5

66
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

H
ou

st
on

 o
n 

04
/1

4/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.



           
P1: KKK/PSA/SPD P2: PSA/ARY QC: PSA

November 16, 1998 19:3 Annual Reviews AR075-15

SWIRLING FLOWS 551

Figure 6 Schematic of dependence of longitudinal velocityUc at the core axis on the streamwise
coordinates, superimposed with visualization of the bubble-type vortex breakdown (Sarpkaya
1995).

process with the help of an analytical solution of NSE for a vortex-sink with
an axial flow (Shtern et al 1997). The mechanism of core formation given by
this model is as follows: The roll-up of the separation surface leads to the gen-
eration of swirl (as shown by the streamlines in Figure 5). The swirl induces a
pressure drop toward the axis, thus attracting other streamlines to the axis; this
further focuses the swirl, thereby further decreasing the pressure in the core.
This positive feedback leads to the strong accumulation of axial vorticity and
momentum, i.e. to the formation of the vortex core.

Downstream, the pressure returns to its ambient value, and the swirling jet de-
celerates, causing internal flow separation (from the core axis) to occur, resulting
in a recirculatory bubble or a helical structure. Figure 6 shows a visualization
of the bubble-type vortex breakdown (Sarpkaya 1995) and a sketch of the de-
pendence of the longitudinal velocity,Uc, along the vortex axiss; U∞ is the
free-stream velocity. There are four regions: 1. jet formation, whereUc can in-
crease up to 5U∞ (Menke & Gursul 1997); 2. developed jet, whereUc saturates
and starts to decrease; 3. recirculatory bubble, whereUc is negative; and 4. vor-
tex wake, whereUc recovers toU∞. The wake above delta wings is turbulent
but can be laminar in confined swirling flows. Figure 7 shows a picture of two
vortex breakdown bubbles in a sealed cylinder with a rotating endwall (Escudier
1984) and their modeling by analytical solutions of NSE (Shtern et al 1997).

Theoretical approaches can be classified into four groups that focus on dif-
ferent facets of vortex breakdown:

1. Collapse of the near-axis boundary layer. The core of a slender vortex is well
predicted by parabolized equations, e.g. boundary layer or quasicylindrical
approximations of NSE (Hall 1972). The slenderness condition (a∂/∂s¿ 1,
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Figure 7 Vortex breakdown in a sealed cylinder (Escudier 1984) and its model (Shtern et al 1997).

wherea is the core radius ands is the longitudinal coordinate) becomes
invalid as vortex breakdown occurs. The corresponding boundary layer so-
lutions suffer from a singularity in the vicinity of flow separation. This
approach captures only the early stages of the core change.

2. Internal flow separation. Some researchers include development of a recircu-
latory zone and flow reversal in the vortex-breakdown definition (Leibovich
1978). However, the flow reversal and recirculatory zone do not neces-
sarily occur in helical and turbulent vortex breakdowns (Sarpkaya 1995).
Leibovich (1984) proposed a model of vortex breakdown as a soliton and
the separation zone as the soliton core. A drawback of his approach is that
states on either side of a soliton are the same, in contrast to vortex breakdown,
where the flow states are very different.

3. Inertial wave roll-up. This theory considers the vortex core as a wave guide
and treats vortex breakdown similar to hydraulic jumps (Squire 1956,
Benjamin 1962, Keller et al 1985). Although inertial waves play an important
role in swirling flows, their application to vortex breakdown has the following
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limitations: The wave theory predicts the appearance of a stagnation point
with decreasing swirl number while vortex breakdown develops as the swirl
number increases in experiments (Sarpkaya 1971). The theory fails to pre-
dict the abrupt vortex consolidation observed in swirling flows (Section 5).
Benjamin analytically continued the velocity field inside the separation
zone, which seems invalid (Wang & Rusak 1997). The stagnation-zone mo-
del (Keller et al 1985) also has limitations, which are discussed in Section 5.

4. Instability. The helical vortex breakdown certainly relates to symmetry
breaking of the upstream flow and therefore to its instability with respect to
spiral disturbances (Leibovich 1984). An advanced stability approach in-
terprets vortex breakdown as a transition from a convective instability to an
absolute instability (Olendraru et al 1996, Delbende et al 1998). However,
the instability does not necessarily lead to vortex breakdown, and axisym-
metric vortex breakdown can occur without instability, as shown for a flow
in a sealed cylinder (Gelfgat et al 1996).

Vortex breakdown has also been viewed as a fold catastrophe, discussed in the
next Section.

5. HYSTERESIS

Trigub (1985) found that, under certain conditions, the quasicylindrical approx-
imation of NSE has a fold in its solution space, which can be physically inter-
preted as vortex breakdown. Saffman (1992) and Buntine & Saffman (1995)
developed this view by studying inviscid swirling flows and using the analytic
approach by Batchelor (1967). They concluded that two regular solutions, both
corresponding to unidirectional flows, can merge and disappear as Squire num-
berSq(inflow swirl/axial velocity ratio) exceeds some value,Sqf . As a result,
a jump transition must occur atSq= Sqf to a very different flow state, e.g. with
a recirculatory zone.

Such a fold catastrophe provides an alternative scenario of vortex breakdown,
compared with the smooth development of separation zone asSq increases.
In the latter case, the axial velocity continuously decreases and changes its
sign. Wang & Rusak (1997), Goldshtik & Hussain (1997, 1998), and Rusak
et al (1998) further developed the fold-catastrophe approach by studying vortex
breakdown in pipes and argued that stagnation zones (rather than recirculatory
zones) appear in inviscid flows, as Keller et al (1985) conjectured. DNS of
steady NSE solutions for swirling flows in diverging pipes (Beran & Culick
1992, Lopez 1994) also reveal the solution nonuniqueness associated with folds.
Lopez (1998) found similar hysteresis for a flow in a rotating, sealed cylinder
with a differentially rotating endwall.
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Figure 8 (a) Hysteretic transitions for flow above a delta wing (Muylaert 1980), and (b) its
explanation in terms of cusp (K ) and fold (F1 andF2) catastrophes.

These interesting theoretical results agree with observations of hysteresis
(typical of swirling flows discussed in Section 1) but do not explain the physical
reasons for the occurrence of folds. Analytical solutions for conical swirling
jets are helpful in achieving this goal. We refer the reader to Shtern & Hussain
(1996) for details and consider here a conical model of vortex breakdown, which
mimics the effects occurring in tornadoes and delta-wing vortices. While the
observations are only occasional in tornadoes (Burggraf & Foster 1977), the
hysteresis above delta wings is frequent and has been studied extensively in
the laboratory (discussed below).

Figure 8a presents results from experiments (Muylaert 1980) involving hys-
teretic transitions above a delta wing. The insets show the flow schematic and
the dependence of the pressure coefficient Cp on the angle of attackα at a fixed
Mach numberMa. There are jumps in the value of Cp atα = α2 asα increases
and atα = α1 asα decreases. In the rangeα1 < α < α2, there are two stable
states that have different Cp (i.e. bi-stability). The jumps correspond to abrupt
shifts in the vortex breakdown location—downstream atα = α1 and upstream
atα = α2. The main plot shows the dependence ofα1 andα2 on Ma (although
compressibility is not essential for hysteresis).

The catastrophe theory is an appropriate mathematical technique to analyze
such jumps. Figure 8b is a sketch showing the dependence of lift forceF on
Ma andα corresponding to Figure 8a. SurfaceF(α,Ma) has foldsF1 andF2,
which meet and terminate at cusp pointK (Arnol’d 1984).

The conical model, discussed below, provides an analytical solution describ-
ing the folds and also the appearance of the cusp asRes increases. Figure 9a
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Figure 9 (a) Schematic of a model for hysteresis shown in Figure 8. Half-line vortex1 of
circulation Res and flow forceM (acting on planes sush as2) induce a flow, which can have two
cells; curves 3and4 show typical meridional streamlines. (b) Numerical (solid) and analytical
(dashed) results for folds corresponding to vortex breakdown (B) and consolidation (C ).

shows a schematic of the flow, where half-line vortex1 models a consolidated
vortex core (upstream of the vortex breakdown) andcurves 3and4 represent
typical streamlines of the meridional motion outside and inside the recircula-
tory zone bounded by the conical surface,θ = θs. The control parameters are
Res (dimensionless circulation of the vortex) andJ0 = J(2πρν2)−1, whereJ
is the flow force acting on the normal plane,z= const> 0 (line2, Figure 9a).

The problem was first studied by Goldshtik (1979) for smallRes and J0,
followed by Paull & Pillow (1985), who considered a special relation between
Res and J0 and found an analytical solution in the limitRes → ∞. Sozou
et al (1994) obtained two more solutions of the Paull & Pillow problem (thus
showing the solution nonuniqueness), and Shtern & Hussain (1996) developed
a general theory of hysteresis in swirling jets.

Figure 9b shows folds (curves BandC ) and cuspK on the parameter space
(M, Res), whereM = 2π J0Re−2

s . Thesolid curvesrepresent the numerical
results, andlines 1and2 are their asymptotes asRes→∞. Line 2(M = 3.74)
corresponds to vortex breakdown in the near-axis Long’s jet (Long 1961), and
line 1 depicts the analytical solution for the fold,M = πRes/12 (Shtern &
Hussain 1996), in the two-cell flows (Figure 9a). The maximum radial velocity,
vrm, of the annular jet flowing out along the surface,θ = θs, is independent of
θs:r vrm/ν = Re2

s/8.
These asymptotic solutions satisfactorily approximate the flow even for mod-

erateRes (Figure 9b) and explain the solution nonuniqueness. To show this,
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we consider the dependence ofJ on vrm at fixed Res. For the flow consol-
idated near the axis, the dominant contribution toJ is from the momentum
flux, ρv2

rmSj , whereSj is the area of cross-section of the jet projected on a plane
normal to the axis. For the swirl-free round jet,Sj ∼ δ2 ∼ 1/vrm yieldsJ ∼ vrm

(Schlichting 1933). Therefore,J decreases with vrm when the swirl contribu-
tion to the meridional motion is negligible. However, as vrm decreases, the
swirl contribution becomes significant (in the vicinity offold B in Figure 9b)
because centrifugal force spreads the jet andSj rapidly increases. Sincer vrm/ν

asymptotes to the constant,Re2
s/8, asRes→∞, the negligible decrease in vrm

cannot compensate for the increase inSj . Therefore,J starts to increase with
further decrease in vrm. Thus the minimum of the flow force in Long’s jet (at
fold B) is a result of the spreading of the jet by swirl. Because of this minimum
in J, the transformation of the near-axis jet into a two-cell flow (as the control
parameterJ0 decreases) cannot be continuous, and vortex breakdown occurs
through a jump.

The second extremum ofJ (at fold C) occurs whenθs becomes suffi-
ciently large to decrease the projection area. Asθs approaches 90◦, bothSj ∼
2πδr cosθs andJ approach zero. Therefore,J increases asθs starts to increase
from zero, but again decreases asθs approaches 90◦. Thus the maximum of
J in the two-cell flow stems from a change in the jet direction: from nearly
parallel to nearly normal to the axis. Because of this maximum inJ, the trans-
formation of the two-cell flow into a near-axis jet cannot be continuous when
control parameterJ0 increases, i.e. vortex consolidation (as well as vortex
breakdown) occurs through a jump. Note that the conical model explains both
abrupt transitions: vortex breakdown and vortex consolidation.

The conical model helps explain also hysteresis in the vortex-wall interaction.
As Res→∞ in the Serrin problem (Section 2), we have the asymptotic solution
for flow pattern B in Figure 2:

ψ = ψsx/xs, 0 = 0 for 0≤ x < xs

and

ψ = −Res
{

xs(1− x)[(2− xs)x − xs]/
(
1− x2

s

)}1/2
,

0 = Res for xs < x < 1,

where

ψs = ResxsP1/2, P = (1− xs)/(1+ xs).

Asxsvaries from 1 to 0,P changes from 0 to 1 for two-cell flows. For the same
range ofP, Serrin (1972) proved the existence of one-cell descending flows
(flow pattern A in Figure 2). Therefore, there are two solutions—descending
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and two-cell—for the sameRes and P. The reason for this nonuniqueness is
similar to that for the free half-line vortex. The flow forceJ of the annular jet
fanning away along the conical surface,x = xs, essentially balances forceFz

(see Figure 1, butFz is directed downward here), i.e.Fz ≈ J. The physical
explanation for theJ maximum (near foldC ) has already been discussed.

The conical models not only elucidate the mechanism of hysteresis but also
reveal another interesting feature concerning the dependence of the Bernoulli
headH(=p+ ρv2/2) and circulation0d(=νRes) on the Stokes stream func-
tion 9. As Res → ∞ for a fixedxs, the analytic solutions yield the limiting
relations,

H = p∞, 0 = 0 for9 < 0 and H = p∞ + 1

2
ρ04

d9
−2,

0 = Res for 9 > 0, (4)

H = p∞, 0 = 0 for9 > 0 and H = p∞ + 1

2
ρ04

d9
−2x2

s(1+ xs)
−2,

0 = Res for 9 < 0, (5)

for the free-space (Equation 4) and vortex-wall (Equation 5) problems. For
inviscid steady axisymmetric flows, the governing equation in cylindrical co-
ordinates (rc, z) is

rc∂/∂rc
(
r−1

c ∂9
/
∂rc
)+ ∂29/∂z2 = r 2

c d H/d9 − 0d0/d9, (6)

which is often referred to as the Bragg-Hawthorne or Squire-Long equation
[although, as Goldshtik & Hussain (1998) pointed out, Meissel (1873) used
Equation 6 significantly earlier]. FunctionsH(9) and0(9) are defined by
inflow boundary conditions outside but are undetermined inside a recirculatory
zone.

Some inviscid theories of vortex breakdown involve conjectures that
(a) H(9) and0(9) can be analytically continued (Benjamin 1962), or (b) flow
stagnates in the recirculatory zone (Keller et al 1985). As follows from Equations
4 and 5,H(9) and0(9) have jumps at9 = 0, the boundary of recirculatory
zone; this contradicts (a). Further, the solutions show that swirl is absent, but
the meridional motion does occur inside the recirculation zone; this contradicts
(b). Thus (a) and (b) both are invalid for the swirling flows treated above.

Now we consider an effect accompanying helical vortex breakdown and
occurring in many other flows: loss of axial symmetry.

6. AXISYMMETRY BREAKING

Instability with respect to azimuthal disturbances typically occurs in radially
diverging flows and is possibly one of the first documented in the literature.
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Thompson (1855) observed the spreading of alcohol (introduced by a capillary
tube) from the center of the water surface in a wine glass. He reports “by the
motion of the powder, one, two, three, or many radial streams flowing out-
wards from the middle, and other return streams or eddies flowing backwards
to the margin of the patch.” Pshenichnikov & Yatsenko (1974) repeated this
experiment (unaware of the Thompson observation) and photographed the flow
patterns. It is interesting that a motivation for their study was the Bratukhin
& Maurin (1967) solution, which describes the axisymmetric Marangoni con-
vection induced by a point source of surfactant. However, the experiment by
Pshenichnikov & Yatsenko reveals that the flow is not axisymmetric even for
small flow rates. As the flow rate gradually increases, the number of eddies
changes from 2 to 10, and then the motion becomes unsteady.

This kind of instability is essentially common to the Marangoni convection
and other diverging flows. Its mechanism is inertial: If velocity along a radial
line becomes larger than that in the ambient fluid, then pressure decreases along
this line (according to the Bernoulli integral for an inviscid fluid). This pressure
drop attracts the ambient fluid, whereupon the velocity difference between this
and other locations increases. Such a positive feedback triggers the formation
of jets and wide inflow regions, while viscous diffusion and dissipation are
stabilizing factors.

The manifestation of this mechanism is especially impressive in the Jeffery-
Hamel flow. The Jeffery-Hamel solution, modeling the unidirectional diverging
flow in a plane diffuser, exists for small, but not large,Re= Q/ν, whereQ is
the flow rate (Batchelor 1967). This striking fact results from a fold catastrophe
(merging and disappearance of two solutions) atRe= Ref (Hooper et al 1982).
For Re< Ref , this flow becomes unstable with respect to steady (Dennis et al
1997) and oscillating (McAlpine & Drazin 1998) disturbances. New solutions
resulting from the instability have both inflow and outflow regions. Symmetry
breaking of the Jeffery-Hamel flow is a specific manifestation of the azimuthal
instability.

The instability analysis is simplest for the point source (which can be viewed
as the limiting case of the Jeffery-Hamel flow, without the walls, when the
diffuser angle is increased up to 2π ). Goldshtik et al (1991) found that the planar
vortex-source is unstable, resulting in bifurcation of the two-dimensional spiral
NSE solutions obtained by Oseen (1927). This instability problem (both linear
and nonlinear) allows an analytical solution. In particular, the critical values of
Re= r vr/ν andRes = r vφ/ν satisfy the relation,m2Re2

s = (Re+ 4)2(2Re+
4−m2). Shusser & Weihs (1995, 1996) generalized the linear stability study
of the vortex-source to three-dimensional disturbances.

Since the bifurcation is subcritical, the Oseen solutions are also unstable.
In contrast, bifurcation of nonaxisymmetric solutions appears supercritical
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Figure 10 Three-branch vortex, bifurcating from a planar vortex-source.

for the Marangoni convection and for a number of other three-dimensional
flows. Moreover, there is a bifurcation cascade corresponding to the subse-
quent halving of length scales of the disturbance motion (Shtern & Hussain
1994); this cascade is similar to the (inverse) Feigenbaum and the Richardson-
Kolmogorov cascades. Thus the nonaxisymmetric Marangoni convection ob-
served by Thompson results from the divergent instability.

Figure 10, resembling spiral galaxies, depicts a three-branch vortex resulting
from the divergent instability (Goldshtik et al 1991). One may speculatively
view the divergent instability as the simplest mechanism triggering the devel-
opment of spiral branches of galaxies. The rotating disk of a galaxy acts as a
centrifugal pump forcing a fanning, swirling jet of the ambient gas. Such a jet
is subject to the divergent instability even adjacent to a no-slip plane.

To demonstrate this feature, we return to the vortex-wall interaction (Figure 1)
and consider the instability of this flow with respect to steady helical distur-
bances. First, we report a new result that the Goldshtik (1960) solution(Fz = 0)
is unstable with respect to them= 1 mode forRes > Recr = 5.064. The neu-
tral disturbance is proportional to exp(iφ− iαi ln r )with αi = 3.047. Thus, the
flow becomes unstable at smallerRes than that for the collapse,Reco = 5.53.

When the axial force is directed toward the wall andRes→∞, a swirling jet
develops fanning along the wall (inset Ain Figure 2). Such a three-dimensional
boundary layer is unstable to helical disturbances. Figure 11 (Shtern &
Dallmann 1995) shows the neutral curves for the azimuthal wave number
m= 2, . . . ,7. The smallest critical value ofRes = Rescr= 63 corresponds to
m = 3, while the smallest value ofRem = Remcr = 71 corresponds tom = 2
(note that them = 1 disturbances do not cause the instability here). FoldF
and separationS curves seem to merge within the accuracy of the drawing
in Figure 11 (note thatcurves Fand0 in Figure 2 merge ask−2 → 0). The
inset shows separation profiles of swirlγ and radialW′ velocities in the limit

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
9.

31
:5

37
-5

66
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

H
ou

st
on

 o
n 

04
/1

4/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.



             
P1: KKK/PSA/SPD P2: PSA/ARY QC: PSA

November 16, 1998 19:3 Annual Reviews AR075-15

560 SHTERN & HUSSAIN

Figure 11 Map of the divergent instability of a wall swirling jet.Insetshows profiles of swirl and
radialW′ velocities. The main plot shows foldF and separationScurves (coincident), and neutral
curves for azimuthal wave numberm= 2, . . . ,7.

Res→∞; γ andW′ are normalized withγ (∞), andη = x Res is the distance
from the wall. Near the wall, the radial velocity reaches its maximum vrm, and
Rem = r vrm/ν.

The divergent instability seems to explain an experiment by Joukovsky (con-
ducted in 1911, published in 1937, and recently repeated by Vladimirov 1994).
A small propeller positioned on the axis between two parallel, fixed disks with a
small central orifice generates a fanning, swirling flow. Although the geometry
and forcing are nearly axisymmetric, the flow has a few spiral branches depend-
ing on parameter values. Note that the divergent instability of the conical wall
jet is similar to that observed for flow over a rotating disk, where the steady
secondary state develops havingm spiral branches (Gregory et al 1955). Also,
there is a limited analogy between the divergent and the cross-flow instabilities
over a swept wing (Malik & Chang 1994): Both cause the development of
steady streamwise vortices.

At first sight, the secondary solutions, resulting from the divergent instability,
seem to contradict dimensional analysis. Consider the planar vortex-source,
where the given quantities—flow rate, circulation, and viscosity—have the same
dimension and thus cannot provide any lengthscale. However, the secondary
flow depends onχ = mφ + α ln(r/r0), wherer0 serves to make the argument
of logarithm dimensionless. A change inr0 merely causes the secondary flow
to turn around the origin. Since there is no preferred azimuthal angleφ in the
problem formulation, any shift inφ is admissible, and thus any value ofr0 can
be chosen.
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The role ofr0 is more significant in axisymmetric three-dimensional flows,
which bifurcate from the solution described by Equation 2 and are periodic
with respect to ln(r/r0) (Shtern & Hussain 1998): A change inr0 causes a shift
of the oscillating solution in the radial direction. In both cases,r0 is a hidden
parameter that governs a phase shift. [A recent theory of cosymmetry (Yudovich
& Kurakin 1997) provides the mathematical background for bifurcation of a
solution family depending on a hidden parameter.] The phase in practical flows
is specified by conditions outside the similarity region. While passing through
its similarity region, the flow “remembers” the phase as well as conserved
quantities, such as flow rate and momentum. It is typical that the phase is
a free parameter of periodic solutions (e.g. for Taylor vortices and thermal-
convection rolls) but is specified near endwalls in confined flows. The role ofr0

becomes important indeed for transient solutions switching between primary
and secondary steady states.

7. SWITCHING BETWEEN FLOW STATES

Now we consider transitions between steady flow states induced by swirl bi-
furcation (Section 3), fold catastrophes (Section 5), and azimuthal instability
(Section 6). Amplitude equations of Ginzburg-Landau type govern spatiotem-
poral evolution of instability modes in the vicinity ofRecr. To deduce these
equations, it is helpful first to transform NSE by introducing the following
dependent and independent variables:

u(x, φ, ξ, τ ) = vr r/ν, y(x, φ, ξ, τ ) = vθr sinθ/ν,

0(x, φ, ξ, τ ) = vφ r sinθ/ν, q(x, φ, ξ, τ ) = (p− p∞)r 2/(ρν2),

ξ = ln(r/r0), x = cosθ, τ = νt/r 2
0 . (7)

Our idea behind this transformation is to exploit the conical similarity of the
basic flow in order to simplify the stability analysis. In particular, despite the
strong nonparallelism of conical flows, the transformation described by Equa-
tion 7 allows the exact reduction of the linear stability problem to ODE, thus
extending the advantages of the similarity approach to nonsimilar disturbances.

Govindarajan & Narasimha (1995) have developed an analogous technique
using similarity variables for the stability study of Falkner-Skan flows, enabling
them to more precisely take into account nonparallel effects. Since the Falkner-
Skan similarity is a feature of the boundary layer equations but not of NSE,
this approach is approximate—in contrast to the present approach, where the
reduction, suitable for any conical flow, is exact—an important difference,
which nevertheless disappears for unsteady disturbances.
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Terms such as exp(2ξ)∂u/∂τ are present in the transformed NSE, and
therefore the normal modes∼ exp(αξ) cannot be applied for infinitesimal
disturbances. This makes the temporal stability analysis significantly more
difficult than that for steady disturbances. This is overcome here with the help
of a small-parameter expansion in the vicinity ofRe= Recr for the instabili-
ties discussed. Since neutral disturbances are steady, the temporal evolution is
slow for Re= Recr + ε (|ε| ¿ 1); this allows the use of a weakly unsteady
approach, including weakly nonlinear effects. Shtern & Hussain (1998) devel-
oped one such small-parameter technique and derived the amplitude equations
for the swirl bifurcation in the form

AT = exp(−2ξ)[γ A− δ|A|2A+ ε−1(Aξξ − βAξ )],

and for the fold catastrophe in the form

AT = exp(−2ξ)[γ A− δA2+ ε−1(Aξξ − βAξ )],

which differ only by the nonlinear terms. HereA is the disturbance amplitude,
T = ετ is the “slow” time, and the subscripts indicate differentiation; constants
β, γ , andδ follow from the expansion.

The amplitude equations, involving the second derivative with respect toξ ,
require two boundary conditions, e.g. atr = r i andr = ro. These conditions
provide a lengthscale, which is absent in similarity solutions. Thus the approach
resolves the lengthscale paradox (see Section 6) and also describes the complete
transition between steady flow states.

Detailed stability studies of the swirl and fold bifurcations reveal that the
switching disturbances grow monotonically with time during transition from
the primary to the secondary steady flow forRe> Recr. These disturbances do
not reveal a wavelike character but grow with time at any fixed observation point
of the similarity region, i.e. the instability is absolute (Huerre & Monkewitz
1990).

8. SUMMARY AND FUTURE WORK

We have highlighted some intriguing features of swirling flows—collapse, swirl
generation, vortex breakdown, hysteresis, and axisymmetry breaking—of both
fundamental and practical interest. Further, we have shown how simple models
provided by conical similarity solutions help us to understand the mechanisms
of these effects.

The singularity development in NSE solutions (collapse) corresponds to the
strong accumulation of axial and angular momenta observed in tornadoes and
flows over delta wings. Swirl bifurcation in similarity models explains the
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threshold character of swirl development in capillary and electro-vortex flows.
Analytical solutions for fold catastrophes reveal why there are so few stable
states and why the jump transitions between the states occur—features typical
of tornadoes and of flows over delta wings and in vortex devices. Finally, the
divergent instability explains such effects as the splitting of a tornado and the
development of spiral branches in free and near-wall swirling flows. Many
important questions still remain unanswered, and certain results need to be
extended and improved. Here we list some topics for further exploration.

1. An explanation of collapse in open conical flows, e.g. modeling cosmic
jets, Marangoni convection, and electro-vortex flows. To achieve this, it is
necessary to study asymptotic features of the corresponding confined flows
as the flow region expands to infinity.

2. An explanation of the difference between the v∼ 1/r viscous jets and the
r-independent inviscid jets.

3. Bifurcation character (sub- or supercritical) of the divergent instability. Of
particular interest would be whether a branching helical vortex exists for
Res > Reco in the vortex-wall problem.

4. Whether chaotic motion develops near intersection points of the neutral
curves (e.g. in Figure 11).

5. Scaling features of turbulence in the far field of self-preserving jets.

6. Effects of swirl in compressible flows with applications to flame stabilization
in scram jets and vortex combustion chambers.

7. Explanation and modeling of the Ranque effect by similarity solutions.

8. An explanation of the antidiffusion phenomenon (Husain et al 1995).

9. The development of a matching technique for conical and outer solutions,
in order to model complex swirling flows with a number of recirculatory
zones (as in Figure 7).
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