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Using direct numerical simulations of turbulent 
channel flow, we present new insight into the genera-
tion of streamwise vortices near the wall, and an as-
sociated drag reduction strategy. Growth of x-
dependent spanwise velocity disturbances w(x) is 
shown to occur via two mechanisms: (i) linear tran-
sient growth, which dominates early-time evolution, 
and (ii) linear normal-mode instability, dominant 
asymptotically at late time (for frozen base flow 
streaks). Approximately 25% of streaks extracted 
from near-wall turbulence are shown to be strong 
enough for linear instability (above a critical vortex 
line lift angle). However, due to viscous annihilation 
of streak normal vorticity ωωy, normal mode growth 
ceases after a factor of two energy growth. In con-
trast, the linear transient disturbance produces a 2-
fold amplification, due to its rapid, early-time 
growth before significant viscous streak decay. Thus, 
linear transient growth of w(x) is revealed as a new, 
apparently dominant, generation mechanism of x-
dependent turbulent energy near the wall. 

Combined transient growth/instability of lifted, 
vortex-free low-speed streaks (above the instability 
cutoff of streak strength) is shown to generate new 
streamwise vortices, which dominate near-wall tur-
bulence phenomena. This new vortex formation 
mechanism consists of: (i) streak waviness in the 
horizontal plane caused by w(x) disturbance growth, 
(ii) generation of horizontal sheets of streamwise 
vorticity and induction of positive stretching ∂∂u/∂∂x 
(i.e. positive VISA), inherent to streak waviness, and 
finally (iii) vorticity sheet collapse via stretching 
(rather than roll-up) into streamwise vortices. Sig-
nificantly, the 3D features of the (instantaneous) vor-
tices generated by transient/instability growth agree 
well with the coherent structures educed (i.e. ensem-
ble-averaged) from fully turbulent flow, suggesting 
the prevalence of this mechanism. Results suggest 
promising new strategies for drag and heat transfer 
control, involving large-scale (hence more durable) 
actuators, without requiring wall sensors or control 
logic. 

 
Introduction 
 
There is an evolving consensus that the increased drag 
and heat transfer in turbulent boundary layers are due to  
near-wall vortical coherent structures (CS). Viable con-
trol of near-wall turbulence, as yet largely unrealized in 
practice, has the potential for enormous savings in fuel 
costs via drag reduction for aircraft, marine transport ve-
hicles, pipelines, and heat transfer management for high-
temperature gas turbines. Although a barrage of drag re-
duction strategies have been studied extensively – e.g. 
compliant walls, polymer additives, riblets, microbubbles, 
electromagnetic forces, active walls with MEMS, among 
many others – their engineering application has remained 
scarce. A lack of successful implementation of boundary 
layer control can generally be traced to two key difficul-
ties: (i) tiny spatial scales of near-wall streamwise CS 
(~ 0.1 mm) and (ii) incomplete understanding of the dy-
namics of CS initiation and evolution. 

To address these inherent obstacles, we propose here 
new control approaches which explicitly utilize recent 
advances in the understanding of near-wall turbulence 
physics. The prominence of streamwise vortical coher 
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ent structures (CS) in near-wall turbulence is now well 
accepted1, as is their critical role in the elevated drag in 
turbulent boundary layers. The transport enhancing effect 
of near-wall CS is well understood. These CS sweep near-
wall fluid toward the wall on one CS flank and eject it 
away from the wall on the other. Drag and heat transfer 
are enhanced by the wallward motion, which steepens the 
wall gradients of streamwise velocity U. Note that the 
gradient reduction on the outward motion side of vortices 
is relatively smaller, resulting in enhancement of mean 
wallward momentum transfer due to near-wall vortices. 

The most logical approach to CS-based reduction of 
drag and heat transfer is to simply prevent vortex regen-
eration in the first place (in contrast to many approaches 
which counteract the wall interaction of fully developed 
CS). Although it has long been hypothesized that a ma-
jor source of turbulence production near the wall is the 
instability of inflectional low-speed streaks2–4, the issue 
remains unresolved. In particular, it is currently un-
known whether streaks of sufficient strength for insta-
bility actually occur in fully-developed near-wall 
turbulence. Additionally, the influence on streak insta-
bility growth of viscous annihilation of streak normal 
vorticity is yet to be quantified, as is the possibility of 
linear transient growth. Finally, the relationship be-
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tween streak disturbance growth and the formation 
mechanism of longitudinal vortices is poorly under-
stood, which has prevented the development of streak 
disturbance control strategies aimed at drag reduction. 

To date, we have demonstrated5 that the CS6,7 ex-
tracted from fully developed near-wall turbulence can 
be directly created by 3D inviscid instability of lifted 
streaks near a single wall (created by previous ‘parent’ 
vortices, no longer present), the generation mechanism 
being akin to that of streamwise vortices in free shear 
layers by oblique mode instability8. This new-found 
association of near-wall CS formation with instability 
mechanisms opens up promising avenues for explaining 
and especially controlling near-wall turbulence, noting 
the documented success of experimental instability con-
trol in both free- and wall-bounded shear flows9. 

To suppress CS via control of streak disturbance 
growth (responsible for CS formation), there are two 
possibilities: either (i) counteract existing perturbations 
which would otherwise generate new CS, or (ii) stabi-
lize the base flow streaks. Pursuit of (i) would necessi-
tate instantaneous and small-scale detection and control, 
which would suffer from the durability problems faced 
by microscale active wall elements. Approach (ii) is 
very attractive from the standpoint of large-scale (hence 
more robust) control, wherein numerous (perhaps thou-
sands of) streaks may be stabilized together – hence 
suppressing new CS formation over an extended spatial 
domain – with a single robust actuator, involving time-
independent control and no flow sensing. 

The primary objective of this paper is to summarize 
our latest findings regarding streak disturbance growth 
and vortex generation. We demonstrate the underlying 
mechanism of CS formation, driven by nonlinear evolu-
tion of 3D disturbances of lifted low-speed streaks, dis-
tinguishing between linear (normal-mode) instability 
and linear transient growth. 

Computational approach 

In the following, we address streak instability-induced 
vortex generation and its control using direct numerical 
simulations of the Navier–Stokes equations. Periodic 
boundary conditions are used in x and z, and the no-slip 
condition is applied on the two walls normal to y; see 
ref. 10 for the simulation algorithm details. The spatial 
discretization and Re are chosen so that all dynamically 
significant lengthscales are resolved (i.e. a finer compu-
tational grid does not markedly affect the solution); 
thus, no subgrid-scale turbulence model is necessary. 
Code validation and accuracy checks were performed by 
comparing the growth rates for simulated 2D and 3D 
(oblique) Orr-Sommerfeld modes of the laminar (para-
bolic profile) flow with independent stability analysis 
results (agreeing within 1%). 

To better isolate instability and the subsequent vortex 
formation, we use the minimum outer Reynolds number 
Re = Uch/ν = 2000 (Uc is the centerline velocity of the 
2h wide channel for a laminar flow with the same vol-
ume flowrate) and the minimum domain sizes in x and z 
for sustained channel flow turbulence – the so-called 
‘minimal flow unit’ of Jimenez and Moin11. For simula-
tions of isolated vortex regeneration, a constant volume 
flux is maintained, and 32 × 129 × 32 grid points are 
used in x, y, and z respectively. 

Disturbance growth of near-wall streaks 

The two most prominent structural features of near-wall 
turbulence are illustrated in Figure 1: (i) ‘streaks’ of 
low momentum fluid which has been lifted into the 
buffer region, and (ii) elongated longitudinal vortices, 
illustrated by the Jeong and Hussain12 vortex definition. 
It is now well-accepted that the streaks are generated by 
the lifting of low-speed fluid near the wall by the nor-
mal velocity induced by streamwise vortices; this is 
consistent with the close proximity of streaks to 
streamwise vortices in Figure 1. Note also that many 
regions of streaks are devoid of nearby streamwise vor-
tices, indicating that the characteristic elongation of 
streaks is due to the advection of streamwise vortices, 
which leave lifted low-speed fluid underneath them in 
their wake. Here, we reveal a more subtle and dynami-
cally significant role of streaks, as a breeding ground 
for new streamwise CS via streak instability. 

Linear instability 

To evaluate the role of streak instability in vortex gen-
eration, we first consider three-dimensional distur-
bances of a class of two-dimensional base flows, 
representing the range of low-speed streak strengths 
(i.e. magnitude of ωy

+ flanking streak, defined later as 
θ20) observed in fully-developed near-wall turbulence. 
Our focus here is on ‘lifted’ streaks, which are detect-
able even outside the buffer layer (e.g. at y+ = 30; see 
ref. 1). Note the distinction of these lifted streaks from 
more numerous sublayer streaks, which are localized to 
the viscous sublayer but do not extend into the buffer 
layer. (Of course, a lifted streak is typically traceable to 
a particular sublayer streak, but the inverse is not gen-
erally true.) We illustrate the unique, inherently three-
dimensional mechanism of (inviscid) instability using 
vortex dynamics concepts, and reveal significant base 
flow modification due to viscous cross-diffusion of 
streak (wall-normal) vorticity. 

To isolate the three-dimensional dynamics of lifted 
streaks, in a ‘clean’ environment free from existing 
structures and incoherent turbulence (including pertur-
bations presumably induced by larger-scale outer
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Figure 1.  Lifted low-speed streaks (black) illustrated by u′ < 0 at y+ = 20 and streamwise vortices (grey) indicated 
by the Jeong et al.12 vortex definition in the region 0 < y+ < 60. 

 

 
Figure 2.  Lifted low-speed streak in near-wall turbulence, illustrated by (a) a typical cross-stream distribution 
of U, approximated by (b) the analytical base flow (1) used for stability analysis. The bold contour shown in (a) 
is the 0.55 Uc contour. 

 
 
vortices), we analyse a z-periodic row of parallel (x-
independent) low-speed streaks, initially containing no 
vortices or ωx whatsoever (i.e. U(y, z) only). Addition-
ally, the streaks are localized to a single wall, to prevent 
the second wall (far removed in z) from strongly influ-
encing the essential near-wall dynamics, such influence 
being minimal in channel and plane Couette flows at 
sufficiently high Re. Note that this class of base flows is 
inviscidly steady (for a constant volume flux) as re-
quired for stability analysis, and is qualitatively consis-
tent with near-wall streaks observed both in minimal5,11 
and full-domain1 turbulent flow, the latter showing re-
gions along individual streaks to be commonly devoid 
of nearby streamwise vortices. 

As a representation of vortex-free, lifted low-speed 
streaks of variable strength, we consider a base flow 
family of the form 

 
U(y, z) = U0(y) + (∆u/2)cos(βsz)g(y) 
 
V = W = 0, (1) 

 
where U0(y) is the turbulent mean velocity profile and 
g(y) is an amplitude function  which satisfies the no-slip 

condition at y = 0 and localizes the streaks’ velocity 
defect to a single near-wall region (i.e. y+ < 60). A func-
tion satisfying these requirements is g(y) ~ y⋅exp(–σ y2), 
normalized to unity and with σ specified such that the 
maximum streak vorticity ωy|max = βs∆u/2 and normal 
circulation per unit length ∆u occur in the range 
y+ = 20–30, consistent with lifted streaks. 

As illustrated in Figure 2 b for a moderately strong 
streak (circulation specified with ∆u in (1)), the base 
flow (1) closely resembles lifted low speed streaks 
prominent both in minimal channel turbulence (Figure 
2 a) and in virtually and (y, z) cross-section of full-
domain turbulence10. In accordance with (1), all streak 
base flows considered here are even-symmetric about 
z = 0, i.e. U(y, z) = U(y, –z). Note that the streaks are 
localized to a single wall (via g(y) in (1)), and hence are 
essentially decoupled from the second wall. Compared 
to single-walled streaks, the influence of a second no-
slip wall immediately above the streak is twofold: (i) 
additional y symmetry is imposed on the linear eigen-
modes and (ii) the subsequent nonlinear evolution is 
fundamentally altered13. 

For illustrative purposes, it is useful to represent the 
‘strength’ of lifted streaks in terms of the maximum 

a b 
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inclination angle θ of vortex lines on the streak flank, 
given locally by θ = tan–1(|ωy|/|ωz|). In this way, the 
strength of the base flow streaks (1) may be character-
ized conveniently as the maximum vortex line lift angle, 
e.g. defined at y+ = 20 as θ20 = tan–1[ωy|max/ 
(dU0/dy(y+ = 20))] with ωy|max = βs∆u/2. Note that this 
provides a visual representation of the relative magni-
tude of the spanwise shear ∂u/∂z ≈ ωy on the streak 
flank. For example, for the moderately strong streak in 
Figure 2 b, the inclination angle of streak vortex lines at 
the z-location of ωy|max at y+ = 20 (equivalent to U con-
tours for x-independent flow) is θ20 = 56°. 

Note that the amplitude function g(y) in (1) deter-
mines the strength of the local curved shear layer (e.g. 
local maxima of ∂U/∂y(y, βsz = π)) residing on the crest 
of the lifted steak. Instability growth rates for sinuous 
modes (defined below) – the focus of this study – are 
found to be relatively insensitive to the strength of this 
shear layer and hence to the amplitude function g(y). 
Note, however, that the typically slower-growing vari-
cose instability mode is found to depend crucially on 
the vorticity magnitude of this wall-detached shear 
layer. Thus, varicose modes, found to be stable here, 
may indeed be unstable for artificially strong streak-top 
shear, although the growth rate is significantly smaller 
than for the sinuous modes14. 

For all flows considered here, the streak spanwise 
wave number βs in (1) is chosen as 2π/βs

+ = 100, corre-
sponding to a 100 wall unit spanwise spacing of adja-
cent low-speed streaks. Although results below may 
subsequently be applied to address the predominance of 
this particular streak spacing, our focus here is on vor-
tex generation from developed streaks, whose spacing 
must thus be specified a priori. Note that the comple-
mentary mechanism of streak formation, i.e. lift-up of 
low-speed fluid near the wall by the induced ν of (ma-
ture) streamwise vortices, is easily understood and now 
well-accepted. 

In accordance with Floquet theory for the z-periodic 
base flows represented in (1), we consider temporal dis-
turbances (denoted by primes) of the form 
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where the streamwise α and spanwise wave number β 
are real, and the eigenvalues σ are generally complex. 
The tilded complex eigenfunctions are periodic in z with 
the streak spanwise wave number βs, and the velocity 
eigenfunctions vanish at the upper and lower walls (y = 
0, 2h). 

To quantify possible linear instability of streaks char-
acteristic of fully-developed near-wall turbulence, we 

first discuss three-dimensional solutions of the stability 
equations for the class of streaks represented by the 
base flow (1). Realizable characteristics of streaks in 
near-wall turbulence are then obtained via a streak edu-
cation procedure, permitting a statistical evaluation of 
these streaks’ degree of instability. 

Due to the finite-amplitude two-dimensionality of the 
base flow (1), direct solution of the associated two-
dimensional p.d.e. eigenvalue problem necessitates a 
complex computational algorithm such as spectral col-
location, involving eigensolution of large, non-sparse 
matrices. This poses a formidable computational chal-
lenge for the single-walled streaks addressed here, 
where the gap between walls is much larger than the 
near-wall region to be resolved. As an alternative (fre-
quently used), we analyse the instability of the streak 
flow (1) using direct numerical simulations of the 
Navier–Stokes equations, initialized with effectively 
infinitesimal disturbances. This approach is well-suited 
for extracting highly resolved most-unstable (or least-
stable) modes, and is used here for finite Re stability 
analysis via ‘freezing’ of the x-independent modes rep-
resenting the base flow in DNS. Additionally, individ-
ual modes of interest may be isolated through 
appropriate choices of small-amplitude disturbances, 
including specification of the streamwise and spanwise 
wave numbers (α, β) and either a varicose or sinuous 
spanwise symmetry. For example, to excite only the z-
fundamental (i.e. β = 0), sinuous mode of streak insta-
bility, we initialize (1) along with an x-dependent span-
wise velocity perturbation of the form 

 
w(x, y) = ε sin(αx)y exp(–σ y2), (3) 
 

where ε is the (linear) disturbance amplitude and σ is a 
normal decay parameter which localizes the perturba-
tion to the near-wall region (y+ < 60). Provided that an 
arbitrary perturbation such as (3) has a non-zero projec-
tion onto the instability mode of interest, the distur-
bance will naturally evolve to this eigenmode. Lock-on 
of the simulation to a given instability mode is signaled 
by sustained exponential growth of E1n(t) (with n ≠ 0), 
the volume-integrated energy in all Fourier modes with 
an x-wave number of α. 

As indicated in Figure 3, a moderately strong streak 
with ωy

+|max = 0.35 (streak lift angle) θ20 = 56°) and 
2π/βs

+ = 100 (Figure 2 b) is indeed linearly unstable, 
with a maximum growth rate of approximately 
σ+ = 0.012 (i.e. doubling of three-dimensional energy in 
29 wall time units). Interestingly, the maximal growth 
rate occurs for a streamwise wavelength of approxi-
mately 300 wall units, closely corresponding to the 
minimum x-wavelength required for turbulence suste-
nance11 at Re = 2000 (Lx

+ = 290). Note that the 400 wall 
unit streamwise extent of a symmetric pair of educed 
near-wall coherent structures17 also exhibits a nearly 
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Figure 3.  Growth rate of most-unstable sinuous mode vs streamwise 
wave number, for streak distribution in Figure 1 with ωy

+|max = 0.35, 
corresponding to a streak lift angle of θ20 = 56°. 
 

 
maximal streak instability growth rate. Collectively, 
these results indicate that the characteristic streamwise 
wavelength of near-wall structures (300–400 wall units) 
is consistent with a predominant streak instability 
mechanism. As a further note, the minimal x-
wavelength for sustained turbulent plane Couette 
flow4 – approximately 170 wall units – differs signifi-
cantly from that of minimal channel flow (Figure 3). 
This discrepancy reflects other fundamental differences 
in the underlying instability mechanisms of minimal 
channel and Couette turbulence13. 

Having shown linear instability of a U(y, z) distribu-
tion visually representative of instantaneous lifted 
streaks in a near-wall turbulence, we now quantify the 
growth rate variation with streak strength, defined in 
terms of the lift angle θ20 (defined above). Note that for 
a fixed streak spacing, θ20 determines the height as well 
as flank-slope of lifted U contours (Figure 2 b). Signifi-
cantly, sinuous streak instability requires a threshold 
streak lift angle θ20 of approximately 50° (correspond-
ing to a streak vorticity of ωy|max = 0.27), reflected by 
the region of positive growth rate σ in Figure 4. Thus, 
lifted streaks may be either passive (stable) or dynami-
cally active (unstable) to small-amplitude sinuous per-
turbations, depending upon rather slight (i.e. virtually 
indistinguishable visually) differences in streak vortic-
ity. For instance, streaks with small difference in streak 
angle – say 45° (stable) and 55° (unstable with signifi-
cant growth rate) – cannot be easily distinguished. Fur-
thermore, this instability threshold indicates that well-
defined lifted streaks, even those extending past the 
buffer layer, are not necessarily unstable. Past the insta-
bility cutoff, the growth rate increases approximately 

 

 
 

Figure 4.  Dependence of sinuous mode growth rate on streak vortex 
line angle θ20 at Re = 2000, illustrating threshold of streak lifting 
required for streak instability growth. 

 
 

linearly with the streak vorticity ωy|max (nearly linearly 
with θ20 for this angle range), suggesting a dominant 
influence of U(z) shear in driving sinuous instability 
(see also ref. 14 for Gortler streaks). Nevertheless, as 
shown below, the sinuous mode is inherently three-
dimensional, and its growth mechanism is distinct from 
that of a one-dimensional U(z) wake profile. Based on 
the instability cutoff behaviour in Figure 4 (consistent 
also with the stability of the turbulent mean profile U(y) 
for channel flow), the straightening of streak vortex 
lines by background ωz is a strongly stabilizing effect 
for sinuous streak instability. 

Owing to the threshold behaviour in Figure 4, the role 
of (linear) streak instability in fully developed near-wall 
turbulence relies critically on the magnitudes of streak 
∂u/∂z (hence streak lift angle) actually realized. To ob-
tain conditional streak statistics, an eduction procedure 
is used to extract individual streak realizations from 
fully developed turbulent channel flow at Re = 1800 
(ref. 10). To obtain local, unsmeared vorticity statistics 
isolated to streaks, the following streak eduction proce-
dure is defined: 

 
(i) Regions of u′ < 0 are identified in a specified y 

plane (black regions in Figure 1). 
(ii) Within each u′ < 0 region, the (xc, zc) locations of 

local minima of u′ are identified as streak centers. 
(iii) The first local maxima of |∂u/∂z| in z is identified 

on either side of each streak center (xc, zc). The 
larger of these two |∂u/∂z| values is recorded as 
the maximum vorticity for each streak realization. 

 
For 50 time realizations of full-domain turbulence 
(Lx

+ ~ 1400; Lz
+ ~ 450), spanning 500 wall time units, 
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Figure 5.  Histograms of conditional streak vorticity statistics, for 
streaks educed at (a) y+ = 10; (b) y+ = 20; and (c) y+ = 30 from fully 
developed channel flow turbulence. The bold line in each denotes the 
instability cutoff in Figure 4. 
 
 

this eduction procedure performed at y+ = 20 extracts 
approximately 11,300 streak (y, z) cross-sections. Di- 
viding the z domain size by the average number of re- 
alizations per unit x (for an x grid spacing of ∆x+ = 29), 
an average spanwise spacing of 96 wall units is ob-

tained between accepted realizations. The close agree-
ment of this educed streak count with the well-accepted 
z-spacing of streaks (~ 100 wall units) confirms that 
streaks are adequately captured and that false triggers or 
omissions are negligible. 

Subject to the conditional streak sampling outlined 
above, histograms of streak lift angle statistics for fully-
developed near-wall turbulence are shown in Figure 5 at 
eduction locations of y+ = 10, 20, and 30. Analogous to 
the definition of θ20 above, the streak lift angle at a gen-
eral y is defined as θn = tan–1[|∂u/∂z|max/(dU0/dy)]y+=n. At 
y+ = 20, comparison of lift angle statistics (Figure 5 b) 
with the corresponding streak instability growth rate 
(Figure 4) indicates that approximately 25% of near-
wall streaks are strong enough (i.e. with sufficient 
∂u/∂z) to be linearly unstable. At y+ = 10 and y+ = 30 as 
well, streaks stronger than the neutrally stable analytical 
streak (of the form (1), indicated by bold line in Figure 
5) occur in fully-developed turbulence. (Thus, not all 
streaks detected in the buffer layer are strong enough to 
become unstable.) 

In summary, streaks of sufficient strength for linear 
instability are in fact realized in the buffer layer. Note 
that at larger y, similar strong streaks are observed, but 
are much less common1. In contrast, most streaks nearer 
to the wall are numerous, but do not have sufficient lift 
angles to be linearly unstable and hence are dynamically 
passive with respect to streak instability. Finally, note 
that other possible mitigating factors of streak instabil-
ity, particularly the influence of viscous annihilation of 
base flow streak vorticity, must also be considered. Ad-
ditionally, the streak count declines sharply near the 
stability cutoff (e.g. Figure 5 b); while the growth rate 
increases with increasing streak strength, the number of 
unstable streaks decreases rapidly (cf. Figures 4, 5 b). 
Hence, a scenario of predominant vortex generation and 
turbulence sustenance via linear instability of lifted 
near-wall streaks must be evaluated carefully, as under-
taken below. 

Linear transient growth 

Having identified linear streak instability of a frozen 
base flow, we now consider the linear evolution of the 
instability eigenmode and other x-dependent distur-
bances of unfrozen, viscously decaying streaks. As 
shown in Figure 6 for an initially unstable streak with 
θ20 = 56°, the normal mode growth is arrested at t+ ~ 50 
by the streak diffusion, resulting in a factor of two 3D 
energy growth (i.e. all x-dependent modes). Note that 
the typical nonlinear (finite amplitude) saturation is not 
occurring here. Instead, attenuation is due primarily to 
cross-diffusion (i.e. viscous annihilation, a kind of pla-
nar reconnection) of the opposite-signed ωy flanking the 
low-speed streak. In fact, ωy is reduced to 70% of its

a 

b 

c 
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Figure 6.  Evolution of 3D energy (all x-dependent modes), for most 
unstable linear eigenmode (solid) and w(x) linear transient distur-
bance (dashed). The viscous streak annihilation is reflected by the 
decreasing streak vortex line lift angle (dotted). 
 
 

 
initial value by the E3D saturation time, indicating that 
the (exponential) streak decay rate due to cross-
diffusion is non-negligible (approximately half the in-
stability growth rate). 

Significantly, much more significant growth of the 
arbitrary w(x) perturbation (3) occurs for the same base 
flow streaks, producing a factor of 20 energy growth 
(Figure 6). Recalling the modest factor of two growth of 
the normal eigenmode, the dominant growth of the w(x) 
disturbance (3) indicates that its initial rapid amplifica-
tion is due to linear transient growth (see ref. 15 for a 
review of the transient growth concept). In short, tran-
sient growth of disturbances is possible for non self-
adjoint (i.e. non-normal) linearized Navier–Stokes op-
erators, such as derived here for disturbances of two-
dimensional streaks. Recall that eigenmodes of tradi-
tional normal mode stability problems are not orthogo-
nal to one another if the corresponding linear operator is 
non-normal. In this case, particular disturbances (in-
cluding specific combinations of normal eigenmodes) 
can generally be amplified by significant factors (i.e. 
linear transient growth), even if all normal eigenmodes 
are individually stable. 

In Figure 6, the early-time evolution of the distur-
bance (3) is dominated by non-normal mode transient 
growth (the only means for disturbance growth to ex-
ceed that of the most unstable normal mode). Note that 
the disturbance (3) eventually locks-on to the normal 
mode and hence excites both the non-normal transient 
disturbance and the normal eigenmode. Further, the 
relevance of the disturbance (3) in the actual flow is 
supported by observations of x-alternating quadrant 2 
and 3 uw Reynolds stress events in near-wall turbu-
lence. As further clear evidence of non-normal transient 
growth, the w(x) disturbance (3) produces a factor of 7

 
Figure 7.  Evolution of 3D energy for w(x) transient disturbance of a 
linearly stable streak with θ20 = 45°, for both linear (dotted) and 
finite-amplitude initial disturbance amplitudes. 

 
 

energy growth for linearly stable streaks (i.e. no 
growth due to stable normal eigenmode), growth which 
is maintained into the nonlinear regime (Figure 7). Fi-
nally, note that distinction of the linear transient growth 
of streaks U(y, z) revealed here, with the linear tran-
sients of the mean profile U(y) studied extensively to 
date16. 

Nonlinear evolution and vortex formation 

Having confirmed that (one-walled) streaks with suffi-
cient y circulation can experience significant growth of 
x-dependent disturbances via a combined linear tran-
sient/instability mechanism, we now consider the sub-
sequent nonlinear evolution using DNS. Results clearly 
illustrate the genesis of streamwise CS, near-wall shear 
layers, and arch vortices, suggesting that streak distur-
bance growth is the dominant mechanism of vortex 
generation and thus turbulence production. Most sig-
nificantly, as the mode grows to a nonlinear amplitude 
(initially w′/Uc = 1% at y+ = 30), new collapsed stream-
wise vortices are directly created (Figure 8 a–c). At 
early times, disturbance growth is characterized by in-
creased circulation of flattened ωx sheets, with the 
spanwise symmetry of the linear eigenmode approxi-
mately maintained. Subsequently, as nonlinear effects 
(described below) become prominent, + ωx begins to 
concentrate on the +z flank of the low-speed streak 
(Figure 8 b). By symmetry, the ωx distribution at a half 
wavelength in x away is obtained by z reflection and 
sign inversion; thus, –ωx is generated on the –z flank 
here. As this ωx amplification continues, collapsed (i.e. 
with compact cross-section) streamwise vortices quickly 
emerge (Figure 8 c). This genesis of new vortices from 
ωx layers is strikingly similar to that frequently ob-
served in minimal channel flow. 
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Figure 8.  Streamwise vortex formation due to finite-amplitude streak instability, illustrated by cross-stream 
distributions of ωx at (a) t+ = 17, (b) t+ = 51, (c) t+ = 103, (d) t+ = 298. Planes in (b) and (c) are tracked with 
the instability phase speed of approximately 0.6 Uc. 

 
 

 
 
Figure 9.  Streamwise vortices’ (x, z) plane tilting, x-overlapping, 
and location relative to a low-speed streak in (a) top view, (b) side 
view. The 80% isosurfaces of +ωx and –ωx at t+ = 103 are (dark) 
shaded and hatched respectively; contours of u at y+ = 20 are overlaid 
in (a), with low levels of u light-shaded to demarcate the low-speed 
streak. 
 
 

Previous studies17 have focused on wall vorticity 
layer rollup due to (2D) self-advection (and image vor-
ticity due to wall impenetrability). In the streak distur-
bance evolution described here, the vortex formation is 
not in reality a rollup process; the formation is inher-
ently 3D, dominated by intense ωx stretching. Even well 
past their initial formation, streamwise vortices and 
hence turbulence continue to be sustained (e.g. Figure 
8 d), indicating the importance of this streak disturbance 
mechanism to turbulence sustenance. 

 

 
 
Figure 10.  Near-wall educed CS and associated coherent events 
(adapted from Jeong et al.7); including ±VISA events (±∂u/∂x); quad-
rant Re stresses Q1, Q2 (ejection), Q3, and Q4 (sweep); and a kinked 
low-speed streak. 
 

 
The 3D geometry of the newly generated vortices 

(Figure 9 a, b) (say, the x-overlapping of tilted, oppo-
site-signed streamwise vortices on either side of a low-
speed streak) agrees well with the typical flow structure 
during the active phase of minimal channel regenera-
tion. Most significantly, this vortex geometry (main-
tained upon evolution except for increasing overlap) is 
strikingly similar to that of 3D CS educed (from more 
than 100 vortex realizations) in full-domain turbulence 
(Figure 10), which has been shown to capture all impor-
tant near-wall events7. Irregularities (e.g. kinks) of the 
base flow streaks and finite-amplitude incoherent turbu-
lence will surely occur, causing variations in vortices 
from one realization to another. If an underlying 
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Figure 11.  Distributions of (a) ωx, and selected terms of the ωx evolution equation; (b) self-induction 
(cross-stream); (c) the –(∂w/∂x) (∂u/∂y) tilting terms, and (d) direct stretching (ωx∂u/∂x); (a–d) are at 
an intermediate time during vortex formation (t+ = 51). The bold line in each panel identifies the ωx 
layer. 

 
 
instability mechanism is present, it should be revealed 
by ensemble averaging over a large number of base 
flow/perturbation combinations, i.e. by CS education. 
The close correspondence of Figures 9 and 10 indicates 
that this is in fact the case, serving as strong evidence 
that this vortex formation process is a dominant mecha-
nism in near-wall turbulence. 

Since the newly generated vortices are predominantly 
streamwise (Figure 9 a), the essential dynamics of vor-
tex formation are those of ωx, whose inviscid evolution 
is governed by 

.
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 Advection stretching tilting 

In Figure 11, we observe that the circulation of the 
elongated near-wall ωx layers (Figure 11 a) increases 
due to vortex line tilting, given by the latter production 
term –(∂w/∂x)(∂u/∂y) (Figure 11 c), which dominates 
the former. Although typically largest in magnitude 
over all others, the –(∂w/∂x)(∂u/∂y) term actually gener-
ates a flattened tail in the near-wall ωx layer (C in Fig-
ure 7 c), not a vortex. Contrary to prior speculation, 
these layers do not roll up due to their self-advection – a 
purely 2D mechanism. In fact, the cross-stream trans-
port (B in Figure 11 b) actually opposes the rollup proc-
ess, due to the opposite-signed ωx immediately 
overhead (SN in Figure 11 a). In reality, vortex forma-
tion is due to direct stretching of +ωx on the +z flank of 

the low-speed streak (also, –ωx amplification on the –z 
flank, at a half x wavelength away), evident from nearly 
circular regions of + ωx∂u/∂x there (D in Figure 11 d). 
We find that this local ωx stretching is sustained in time 
and is mainly responsible for the vortex collapse, whose 
location coincides with the +ωx∂u/∂x peak. 

In turn, the positive ∂u/∂x responsible for vortex col-
lapse by stretching is a simple consequence of low-
speed streak waviness, illustrated in Figure 9 a. Recall 
that streak waviness is generated both by (linear) tran-
sient growth and sinuous streak instability. Once this 
waviness grows to a finite size, strong + ∂u/∂x develops 
downstream of the streak crests, causing direct stretch-
ing of positive (SP) and negative (SN) ωx existing there. 
Since a large velocity difference exists across the streak 
flanks (with vorticity comparable to the mean velocity 
gradient at the wall), a sizable value of + ∂u/∂x is 
quickly generated by the rapidly growing streak wave. 
The initial ωx sheets (Figure 8 a) then suddenly collapse 
(Figure 8 c) due to localized stretching (Figure 11 d), 
overcoming viscous diffusion which would otherwise 
cause their annihilation (on a similar timescale as the 
collapse). Note that these dynamics are also captured as 
(ensemble-averaged) +VISA events (i.e. + ∂u/∂x) exist-
ing within the CS core (Figure 10), indicating that this 
vortex generation process is indeed a dominant one. 

Concluding remarks 

To summarize, we have shown that non-linearly evolv-
ing w(x) disturbances of ejected low-speed streaks, ini-
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tially without any vortices whatsoever, directly generate 
new streamwise vortices near the wall. The resulting 3D 
vortex geometry is identical to that of the dominant CS, 
educed from fully developed near-wall turbulence, 
which in turn capture all important, extensively reported 
near-wall events. This serves as strong evidence that 
vortex-less streaks are the main breeding ground for 
new streamwise vortices, commonly accepted as domi-
nant in turbulence production. In turn, the geometry of 
the newly generated vortices constitutes a built-in 
mechanism which sustains ejected streaks against their 
otherwise rapid self-annihilation due to cross-diffusion 
of ωy. Vortex-less streaks, the vehicle for vortex forma-
tion, are expected to arise inherently due to the diffe- 
rential advection of vortices and the streaks they gener-
ate. 

Since streamwise vortex formation and the associated 
enhanced drag appear to be reliant on lifted low-speed 
streaks with strong ωy, large-scale (relative to the natu-
ral streak spacing) control of streaks is a potentially 
effective approach to drag reduction. We have demon-
strated the feasibility of drag reduction via bulk forcing 
using either counter rotating vortex generators or collid-
ing spanwise wall jets, requiring no instantaneous flow 
information (otherwise necessary for adaptive con-
trol)18; for details. For implementation at very high Re, 
the physical scale of our control will likely decrease, 
but being significantly larger than the near-wall struc-
tures, will alleviate the scale limitations of controllers 
and eliminate the need for sensors. 
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