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Effects of boundary condition in numerical
simulations of vortex dynamics
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(Received 8 May 2004 and in revised form 6 July 2004)

We show that the periodic boundary conditions typically applied in numerical simula-
tions of vortex dynamics can lead to significantly incorrect results even when the vortex
cores are small compared to the computational domain. This is demonstrated for two
previously studied flows which capture significant flow physics: (i) an isolated vortex
embedded in fine-scale turbulence; (ii) two antiparallel vortices of unequal strength
undergoing reconnection. In case (i), periodicity, when invoked, results in strong,
unphysical turbulence growth leading to vortex core transition, whereas the vortex
remains totally intact during its interaction with the turbulence when periodicity is
not invoked. In case (ii), the vortex interaction, including reconnection, is significantly
distorted. These differences are due to the artificial zero circulation constraint, inherent
in periodic simulations.

The Fourier pseudospectral algorithm with triply periodic boundary conditions
(TP) (Canuto et al. 1988) is commonly used in direct numerical simulations (DNS) of
nominally unbounded flows (i.e. flows away from walls). In addition to its application
to homogeneous turbulence, the method has been extensively used to study vortex
dynamics such as pairing and reconnection, vortex transition, vortex breakdown and
vortex–turbulence interaction. While a number of these flows are not strictly periodic,
it is commonly assumed that the influence of the artificial image flows (in the adjacent
boxes) on the flow within the computational domain can be reduced to insignificance
by considering a sufficiently large domain size. Most DNS studies use computational
domain sizes about 3–10 times larger than the core diameters of the vortices simulated.

The effects of TP periodicity are two-fold. First, the infinite array of periodic image
flows exerts on the flow within the computational domain a strain field, whose strength
scales inversely as the square of the domain size and which, if sufficiently strong, can
trigger the elliptic instability (Kerswell 2002). Second, periodicity implies that the
net circulation contained within the domain must be precisely zero. Consequently,
an isolated vortex is rendered centrifugally unstable by the Rayleigh criterion. This
is seen in figure 1, where the computationally represented velocity and circulation
profiles for an Oseen vortex (ωz = ω0 exp(−r2/r2

0 ), where ωz is the vorticity and r0

the core size) are shown for three different computational domain sizes. Even when
the computational domain is roughly 30 times the vortex core size r0, the region of
decreasing circulation dΓ/dr < 0 (where Γ = 2πruθ ) is seen to extend up to the core
edge. While the negative vorticity associated with this region is weak, the artificial
instability of the vortex can exert significant influence on long-term flow evolution.
We demonstrate this in the following.

We compare simulations using the classical TP method with those using a spectral
algorithm (UB) recently developed by Rennich & Lele (1997). This scheme is
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Figure 1. Velocity and circulation profiles for an Oseen vortex with core radius r0 = 0.13π
in domain sizes of 2π, 3π and 4π.

well-suited for flows with compact vorticity in domains that are unbounded in two
directions and periodic in the third. In UB, the vorticity equation is time-integrated
in Fourier space:

(∂/∂t + νk2)ω̃(k) = −(ik × (ω̃ × u))(k), (1)

where ω, u and ν are the vorticity, velocity and kinematic viscosity, respectively; ∼
denotes the Fourier transformed field, f =

∑
kx ,ky ,kz

f̃ exp(ik · x). The vorticity ω is
required to be compact, i.e. ω → 0 as r → R, where R = X/2 = Y/2, and X and Y are
the domain sizes in the x- and y-directions. The flow is periodic in z. The velocity
u is decomposed into a rotational component ũω = ik × ω̃/k2 and an irrotational
component ∇φ, which is computed by applying the potential flow boundary condition
at r =R. The addition of ∇φ removes the effects of periodicity in x and y. (The
profiles for an Oseen vortex in UB coincide with the ‘exact’ curves in figure 1.) The
derivatives of ω and ω × u required for integrating (1) can be computed in Fourier
space as these fields are spatially compact. Details of the algorithm are given in
Rennich & Lele (1997).

The TP and UB codes employed here used the third-order compact-storage Runge–
Kutta scheme for time-stepping and the 2/3 truncation rule for dealiasing (Canuto
et al. 1988). The UB algorithm requires interpolation of velocity and vorticity fields
between Cartesian and cylindrical–polar meshes; herein we employ fourth-order
Lagrangian interpolation (shown to be adequate, as discussed later).

Both codes have been well-validated. For instance, the peak value of velocity
derivative skewness for decaying homogeneous isotropic turbulence computed using
TP is found to be −0.47, in good agreement with results in the literature (see e.g.
Mansour & Wray 1994). For UB, we have computed the growth rates of small-
amplitude perturbations to the ‘q-vortex’: uθ = q(1 − exp(− r2))/r , uz = exp(− r2),
ur = 0. In figure 2(a), we plot the evolutions of three-dimensional energy E as predicted
by (inviscid) theory (Mayer & Powell 1992) and as obtained from DNS initialized with
a small-amplitude perturbation. Here q = 0.693, axial wavenumber k = 1.18, azimuthal
wavenumber m =2 and the vortex Reynolds number ReΓ ≡ circulation/viscosity=
105; the simulation uses 96 × 96 × 16 grid points. The growth rates agree within
0.1%.

We first consider the vortex–turbulence interaction problem, a flow which has
been studied using DNS (Melander & Hussain 1993a , hereinafter referred to as
MH) and analysed via rapid-distortion theory (RDT) (Miyazaki & Hunt 2000).
An Oseen vortex with r0 = 0.13π is situated within a region of random, fine-scale
fluctuations. A homogeneous, isotropic fluctuation field is first generated and then
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Figure 2. (a) Three-dimensional energy E vs. time t for a q-vortex. (b) Spectra of
three-dimensional enstrophy Z(k) for UB simulation of vortex–turbulence interaction.
(c) Spectra of three-dimensional enstrophy for the UB simulation of γ = 0.25 reconnection.
(d) Evolution of domain velocity maxima for UB simulations of γ =0.25 reconnection.

the ‘turbulence’ is truncated at a radial extent of rt = 0.95π by applying a compact
spatial filter s(r) = [(ξ 2 − 2)/2(ξ 2 − 1)] exp[ξ 2/(ξ 2 − 1)], where ξ = r/rt . The velocity
fluctuations are then rendered divergence-free. The radial truncation to render the
turbulent vorticity field compact is unavoidable in UB, but has little effect on the
long-time evolution of the flow since turbulence around a vortex decays rapidly
when straining is axisymmetric. For instance, RDT analysis shows that the turbulence
enstrophy diminishes as t2/r4 (t being time) – even when there is no dissipation of
the turbulence via its self-interaction. To confirm the insensitivity of flow evolution to
the spatial filtering, we have re-computed the simulation described below: (i) with rt

doubled, and (ii) with a spatial filter that eliminates turbulence within the vortex core.
In all cases, the turbulence intensities in the vicinity of the core (r < 5r0) converge to
within 10% of each other after 20 turnover times, and the agreement improves with
further evolution. Thus, the quantitative, and certainly the qualitative, aspects of the
flow physics observed herein are insensitive to the distinctly different spatial filtering
applied. In the simulations discussed below, the initial turbulence intensity u′ is 10%
of the vortex’s peak (azimuthal) velocity. The vortex Reynolds number ReΓ = 6000
and the flow is simulated using 1283 grid points in a domain size of (2π)3.

Figure 3 compares the TP and UB simulations in terms of vorticity magnitude ω

contours in a meridional plane through the vortex axis. Isovorticity surfaces of flow
evolution are shown in figure 4. T denotes time normalized by the vortex turnover
time defined in terms of the peak vortex velocity and core radius. Note that the
contour increments chosen are identical for the two cases. The initial effect of the
vortex on the turbulence is to realign ωr into ωθ and stretch the fine-scale vortex
filaments azimuthally. The vortex column’s strain first increases with increasing r ,
reaches a peak at the core periphery and then decreases as 1/r2. Thus, most of
the enstrophy production occurs near the core periphery and this is where the most
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Figure 3. Comparison of UB (top row) and TP (bottom row) flow evolutions with identical
initial condition. Vorticity contours with increment 0.1ω0 are plotted in a meridional plane.
Times (running from left to right in each row) shown are T = 0, 30, 60 and 90 for UB and
T = 0, 60, 120 and 180 for TP.
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Figure 4. Isovorticity surfaces at T = 30 (ω = 0.3ω0) and T = 90 (ω = 0.6ω0) for
(a) UB and (b) TP.

intense turbulence filaments (vortexlets) are found (T = 30 in UB). As the turbulence
is organized into ring-like vortexlets wrapping the column (T = 30 in figure 4), the
mutually induced motion of vortexlet dipoles with opposite-signed ωθ carries them
radially outwards (Pradeep & Hussain 2003) (T = 60 in UB) – a process very similar to
colliding vortex rings. This process of turbulence reorganization is concomitant with
the dissipation-induced decay of the fine scales; at this ReΓ , dissipation overwhelms
production, and hence the turbulence virtually disappears by T =90 (UB), leaving
behind a laminar vortex column with weak wavy motion in the core (figure 4). In
contrast with this monotonic decay of turbulence in UB, turbulence kinetic energy
is amplified in TP causing intense vortexlets – found even far away from the vortex
column core (T = 60 in figure 3) where the vortex’s strain is very weak. The effect of
these vortexlets on the column is two-fold: first, they induce strong bending waves
on the vortex column, and, second, the vortexlets peel away the vortex’s peripheral
vorticity. The latter process is evident at T = 120 in the form of sheet-like regions of
strong vorticity gradients. This process of ‘stripping’ has been observed in simulations
of an array of rings around a vortex column (Marshall 1997). It was found there
that stripping requires sufficiently strong rings (having circulation ∼20% of vortex
circulation); the absence of stripping in UB is because of rapid turbulence decay. As
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Figure 5. (a) Growth of three-dimensional energy E in TP simulation of an isolated vortex
subjected to small-amplitude perturbations; (b) comparison between TP and UB of turbulence
production profiles for the simulations in figure 3.

a result of this depletion of vortex-column strength its core undergoes transition into
fine-scale turbulence – a process which is complete by T = 180 (figure 3). Isovorticity
surfaces plotted at T = 90 (figure 4) show the progressive weakening of the vortex core
and those at T = 180 (not shown) confirm the absence of any coherent vortex core.

Standard numerical resolution checks have been performed to ensure that the fine-
scale vortical structures seen in figure 3 are not contaminated by numerical errors.
For instance, we plot in figure 2(b) the enstrophy spectra for the UB simulation at
various times. In the initial period (0 � T � 5), a large fraction of three-dimensional
energy rapidly cascades to smaller scales. Thus the tail of the enstrophy spectrum
lifts up, until about T = 5, when the dissipation rate is the largest. The fine scales
become progressively less energetic with further evolution, and hence the numerical
resolution steadily improves. Even at T = 5, the spectrum has a fall-off of greater than
one decade, showing minimal aliasing errors. Similar well-resolved spectra are seen
for the corresponding TP simulation. As an additional check on resolution, the UB
simulation was re-computed with an increased resolution of 2643, until T = 25. The
maximum deviation of domain-peak velocity magnitude between the two simulations
was less than 1%, confirming that the 1283 simulation is adequately resolved.

The presence of intense turbulence in the entire computational domain for TP
suggests that the simulation is strongly contaminated by the spurious centrifugal
instability. To reveal this more clearly, we repeat the TP simulation with the turbulence
amplitude reduced to a very low level, so that the simulation well-approximates linear
stability analysis. Figure 5(a) plots the growth of three-dimensional energy and shows
that the growth is exponential, as is characteristic of a linearly unstable flow. In
this limit of small-amplitude perturbations, RDT analysis (Miyazaki & Hunt 2000)
is exact and shows that for a stable vortex three-dimensional energy grows as t2

(algebraic growth). The only source of exponential energy growth in this flow is the
centrifugal instability due to a velocity profile with dΓ/dr < 0 (figure 1).

While the centrifugal instability clearly contaminates the TP simulation (figure 3),
the artifacts of TP boundary conditions do not occur if ReΓ is sufficiently small. To
illustrate this, we repeat the simulation of MH (their case T5) using both TP and
UB methods (ReΓ = 665). In the MH study, the emphasis being on the evolution
of turbulence scales much smaller than the vortex, the external turbulence was
initiated with the finest scales permitted by the numerical resolution (1283). Also, to
allow sufficient time for the fine-scale turbulence to survive dissipation, the initial
turbulence intensity was very large (100%). Consequently, to remove still smaller
scales (produced by cascade) than permitted by the resolution, the viscosity had to
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Figure 6. ω contours of UB simulation (a), and TP simulations with spatial filtering (b) and
without spatial filtering (c) for MH’s case T5. Times (running left to right in each row) are
T = 0, 4, 8, 12 and contour levels [ωmin, ωmax, δω] are [4, 40, 8], [0.25, 3.5, 0.25], [0.2, 2.6, 0.2],
and [0.2, 2.4, 0.2], respectively.
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Figure 7. Turbulence kinetic energy profiles: (a) UB, TP (with and without spatial filtering)
simulations of figure 6; (b) TP simulations (ReΓ = 665 and 6650) at T = 120.

be chosen high. Thus, ReΓ was fairly low in MH. In figure 6 we plot ω contours for
UB and TP simulations at ReΓ =665. We perform TP simulations with filtering (for
comparison with UB) and without filtering (to replicate MH). The good agreement
between the UB (figure 6a) and filtered TP (figure 6b) simulations shows that ReΓ

here is too low for the centrifugal instability. (This confirms that the results and
conclusions of MH hold.) Note also that the good agreement between the unfiltered
TP (figure 6c) and filtered TP (figure 6b) cases confirms that spatial filtering of
ambient turbulence does not noticeably affect the flow physics (as discussed earlier).
In all three cases the turbulence decays monotonically, by viscous damping, and by
T = 12 the vortex is quasi-laminar, as also seen from the profiles of turbulence kinetic
energy in figure 7(a).

The centrifugal instability effect strengthens as the vortex-core-to-computational-
domain size ratio or as ReΓ is increased. Note from figure 1 that the potential for
instability exists even for very small core-to-domain size ratios (because dΓ/dr < 0).
At a fixed ReΓ , the spurious effect strengthens as the core-to-domain size ratio is
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Figure 8. ω contours for (a) Re =665 and (b) Re =6650 TP simulations at times (running
from left to right in each row) T = 12, 40, 80, 120. Contour levels are [0.1, 2.5, 0.1].

decreased. And at a given core-to-domain size ratio, the effect strengthens as ReΓ is
increased. To demonstrate the effect of increasing ReΓ , we consider the TP simulation
of figure 6 with ReΓ increased tenfold. After the initial period of evolution
(0 � T � 12), the turbulence has sufficiently decayed, permitting an increase of ReΓ

(by decreasing viscosity) while keeping the numerical resolution the same. Figure 8
compares the evolutions at ReΓ = 665 and 6650. At the higher ReΓ , the initially
low-amplitude perturbations are amplified most at the core periphery, where
dΓ/dr < 0. These amplifying perturbations take the form of arrays of vortexlet
rings with alternating sign of ωθ . As the perturbations amplify, they induce large-
amplitude wave motion on the core (revealed by application of the helical wave
decomposition (see Melander & Hussain 1993b, for discussion of this technique) in
the form of modes that propagate axially with little change in structure) and strip the
vortex’s peripheral vorticity. By T =120, the high-ReΓ flow appears fully turbulent –
a simple consequence of the spurious instability inherent in the boundary condition –
whereas the low-ReΓ flow is laminar, as seen from the profiles of turbulence kinetic
energy in figure 7(b). We conclude from this comparison that ReΓ must be kept
small (far smaller than the value permitted by numerical resolution requirements) if
errors due to the centrifugal instability effect are to be avoided. This makes the TP
method untenable for studying vortex–turbulence interaction, since this interaction is
of interest in high-Reynolds-number practical flows.

What is interesting about the centrifugal instability effect in this particular flow is
that both the instability and the vortex’s strain field promote the formation of ring-
like vortexlets around the core. Therefore, TP simulations capture qualitative aspects
of flow evolution (at least for short times), but severely overpredict the intensity of
the turbulence and the long-time decay of the vortex column. The discrepancy in
turbulence quantities between UB and TP evolutions (for the simulations of figure 3)
is illustrated in figure 5(b). Turbulence production is an order of magnitude larger
in TP than in UB. Note that the undulations in UB in figure 5(b) disappear when
averaged over a large number (>20) of realizations.

As a second illustration of the significance of boundary conditions, we consider
a typical case of vortex dynamics: reconnection between two anti-parallel vortices
(Kida & Takaoka 1994). The effect of the zero circulation constraint for TP emerges
when the two vortices have unequal strengths (quantified by the circulation ratio γ ) –
a case considered in Marshall, Brancher & Giovannini (2001) by TP simulations. We
consider two columnar vortices with axes aligned along the z-direction and centred at
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Figure 9. (a) Γs and Γd evolution for γ = 1 reconnection. (b) Γs for γ = 0.82. (c) Γs for
γ =0.25. (d) Γd for γ = 0.25. Lines are TP and symbols UB.

(xc, yc) = (±δ, 0). The vortices are given a small-amplitude bending wave perturbation
such that their self-induced motions cause them to move towards each other. The
rate at which reconnection proceeds can be quantified by measuring the circulations
(Γs and Γd) in the ‘symmetry’ (z = 0) and ‘dividing’ (x =0) (half-) planes. Note that
the vortex cores are initially closest in the symmetry plane. The dividing plane has
special significance in the γ = 1 case, being the plane in which ωz is identically zero
at all times. The circulations Γd and Γs are defined as

Γs =

∫ Y/2

y=−Y/2

∫ 0

x=−X/2

ωz(x, y, 0) dx dy, Γd =

∫ Y/2

y=−Y/2

∫ Z/2

z=0

ωx(0, y, z) dz dy,

where X, Y and Z are the domain dimensions. In the simulations discussed below
the vortex cores are 1/30th the domain size, and the simulations are performed at
ReΓ = 1500 using 1203 grid points (these flow parameters are identical to those of
Marshall et al. 2001).

First, consider the two vortices with equal circulations (γ = 1). As reconnection
proceeds, circulation is transferred from the symmetry plane to the dividing plane
such that Γd +Γs = constant, as required by the divergence-free nature of vorticity.
It is well-known that reconnection does not proceed to completion, i.e. Γs does not
tend to zero at large times but instead asymptotes to a finite value. Remnants of the
original vortex core (‘threads’) remain with vorticity along z. An important theoretical
problem is to predict thread circulation as a fraction of the original vortex circulation,
i.e. Γs(t)/Γs(0). In figure 9(a–c), we plot this quantity for three cases: γ =1, 0.82 and
0.25. For γ =1, the net circulation in the flow is zero. Consequently, TP and UB
simulations agree, as expected. However, there are significant discrepancies between
the two methods when γ �= 1. The simulations disagree by roughly 30% for γ = 0.82
and by 25% for γ =0.25. The difference arises because the TP method is unable to
accurately represent the azimuthal velocity profiles and hence the true value of Γs(t)
because of the zero domain circulation constraint. Thus the quantitative predictions
of the degree of reconnection completeness obtained from TP are erroneous.
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Figure 10. Isovorticity surfaces (ω = 0.2) at T = 0, 6, 12 and 18 (a–d) for UB simulation
of interaction between two anti-parallel vortices of unequal strength. Dividing plane (x = 0)
shown in (c).

Insignificant errors in all the reconnection cases have been confirmed by checking
that there is no ‘pile-up’ in the enstrophy spectra. For instance, we plot the spectra for
the UB γ = 0.25 reconnection simulation in figure 2(c). The spectra decay by more
than two decades at all times, showing the aliasing errors to be insignificant. Spectra
in TP simulations are equally well-resolved. As an additional check, we compare
in figure 2(d) the evolution of domain-peak velocities for γ = 0.25 reconnection
computed using 1203 and 2403 grid points. The maximum deviation between the two
is less than 2%. The interpolation of velocity and vorticity fields between Cartesian
and cylindrical–polar meshes required in UB is a potential source of loss of numerical
accuracy. Figure 2(d) also plots the evolution of domain-peak velocity magnitude
obtained using fourth-, sixth- and eighth-order Lagrangian interpolations, all 1203.
These curves are visually indistinguishable. Thus, 1203 fourth-order simulations are
adequate. These checks show that the quantitative differences seen between TP and
UB simulations are an artifact of boundary conditions, and not numerical errors.

While TP and UB simulations broadly agree on the qualitative aspects of the
vortex dynamics for γ �= 1, there are some subtle differences between the two. We
focus on the γ = 0.25 case. Flow evolution in the UB simulation is illustrated in
terms of isovorticity surfaces in figure 10. The main physical mechanism in this flow
is the wrapping of the weaker vortex around the stronger column with its ring-like
legs self-advecting along the column. Continued evolution of this flow at large Re
would result in a hierarchy of ‘rings’, which induce bending and axial waves in the
column’s core. TP and UB simulations agree well in these qualitative aspects, but
there are quantitative differences in the rate of wrapping of the weaker vortex around
the stronger column. This is indicated by the difference in Γd evolutions in figure 9(d).
Initially, the only contribution to Γd comes from the slight bending wave perturbation
given to the vortices (T = 0 in figure 10). As the weaker vortex is wrapped, its vorticity
is tilted further into the x-direction and hence Γd increases. As the wrapped vortex is
wound closer to the column, it induces strong core dynamics on the column (Marshall
et al. 2001), generating ωx in the column’s core. Core dynamics-induced ωx in the
column is of opposite sign to the ωx of the weaker vortex. This effect is illustrated in
figure 11(a), where ωx occurs in two dipole-like patches, where one patch is the leg
of the weaker vortex and the opposite-signed patch is ωx induced within the stronger
vortex. These regions have nearly equal circulations by T = 18 and hence Γd becomes
nearly zero in the UB case. Such patches are also seen in TP, but with stronger
|ωx | (figure 11b). More significantly, however, the weaker vortex is swept around the
column more slowly in TP. This is indicated by the presence of the two lowest cells
of ωx in the (y, z)-plane. These cells are cross-sections of the legs of the weaker
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Figure 11. ωx contours at T = 18 in the x = 0 plane (shown in figure 10c) for (a) UB
and (b) TP cases. Shaded regions contain −ωx . Contour increment δωx = 0.02.

vortex and do not appear in UB because the weaker vortex no longer intercepts the
dividing plane. The persistence of these ωx cells in TP causes the slower decay of Γd

(figure 9d).
These differences arising from different boundary conditions are remarkable because

the vortex cores are a very small fraction of the domain size. Thus, the effect of
straining by the image flows is negligible. Yet, as we show, periodicity can significantly
contaminate quantitative predictions, such as the reconnection time scale – which
depends on the delicate balance between vortex stretching, tilting and diffusion.

In summary, the results here emphasize that TP simulations must be avoided
whenever the net circulation of the flow being simulated is non-zero – even if the
vortices are small compared to the domain size. When the net circulation in the flow is
zero, the TP method may well be preferable as it requires about half the computational
time. Rennich & Lele (1997) present evidence that even for zero net circulation flows
the UB method is superior because the domain size can be much smaller than in TP,
but this advantage may not translate to all flows. An example is trailing vortex decay
in ambient turbulence. For non-zero circulation flows, it is clearly preferable to use
more advanced schemes than TP, such as the Rennich & Lele algorithm.
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