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A new stability approach is developed for a wide class of strongly non-parallel
axisymmetric flows of a viscous incompressible fluid. This approach encompasses all
conical flows, and all steady and weakly unsteady disturbances, while prior studies
were limited to specific flows and particular disturbances. A specially derived form of
the Navier—Stokes equations allows the exact reduction of the linear stability problem
to a system of ordinary differential equations. We found that disturbances originating
at the boundaries of a similarity region cause a variety of steady bifurcations.
Consideration of the still fluid allows disturbances to be classified into inner, outer and
global modes, depending on the boundary conditions perturbed. Then we identify and
study modes which cause bifurcation as the Reynolds number increases. The study
provides improved understanding of (¢) azimuthal symmetry breaking, (b) genesis of
swirl, (¢) onset of heat convection, (d) hydromagnetic dynamo, (e) hysteretic
transitions, and (f) jump flow separation. We also discover and analyse two new
bifurcations: (g) fold catastrophes and (/) appearance of radial oscillations in swirl-free
jets. The stability analysis reveals that bifurcations (a), (¢) and (f) are caused by inner
perturbations, bifurcations (b), (d), (e) and (g) by outer perturbations, and bifurcation
(h) by global perturbations. We deduce amplitude equations to describe the nonlinear
spatiotemporal development of disturbances near the critical Reynolds numbers for (o)
and (g). Disturbances switching between the basic and secondary steady states are
found to grow monotonically with time.

CONTENTS
1. Introduction page 34
1.1. Conically similar flows 34
1.2. Steady bifurcations in conical flows 37
1.3. Instability of conical flows 38
2. Problem formulation 40
2.1. New form of the Navier—Stokes equations 40
2.2. Equations for basic flows 41
2.3. Equations for disturbances 41
2.4. Boundary conditions 41
2.5. Invariant features of the stability problem 43
3. Stability of the fluid at rest 43
3.1. Modified equations for disturbances 43
3.2. Spectrum for the unbounded still fluid 44

3.3. Spectrum for a conical region 45



34 V. Shtern and F. Hussain

4. Axisymmetric instability of swirl-free jets 48
4.1. Swirl-free jet 48
4.2. Hysteresis 49
4.3. Fold-catastrophe instability 50
4.4. Oscillatory instability 53
5. The instability nature of swirl bifurcation 57
5.1. Possible mechanisms for appearance of swirl 57
5.2. General features of swirl disturbances 57
5.3. Instability of flows driven by surface stresses 59
5.4. Instability of flows driven by body forces 61
5.5. Mechanism of swirl accumulation 62
6. Azimuthal instability 63
6.1. Squire-Wang flow 63
6.2. Diverging electro-vortex flow 65
6.3. Thermal convection 66
7. Temporal instability 68
7.1. Small parameter technique 68
7.2. Evolution of swirl disturbances 70
7.3. Temporal instability near the fold bifurcation 76
8. Discussion and concluding remarks 79
8.1. Inner and outer modes 79
8.2. The role of similarity 80
8.3. Unsteadiness 80
9. Summary of new results 81
Appendix. Adjoint problem 82
References 84

1. Introduction
1.1. Conically similar flows

This paper develops a new approach for stability analysis of steady-state bifurcations
in conically similar flows of a viscous incompressible fluid. Conical similarity is a
feature of a wide family of solutions of the Navier—Stokes, heat, diffusion and
magnetohydrodynamic (MHD) equations. The family includes planar vortex-sink and
Jeffery—Hamel flows (Batchelor 1967), swirl-free jets (Schlichting 1933 ; Landau 1944),
swirling jets (Long 1961; Serrin 1972), swirling flows (Yih et al. 1982), Marangoni
convection (Bratukhin & Maurin 1967), thermal convection (Schneider 1981) and
electro-vortex flows (Bojarevics et al. 1989). This list of topics is incomplete, and only
a handful of references are cited here. For reviews and general features of the conical
solutions see, e.g. Pillow & Paull (1985) and Wang (1991).
In conically similar flows, velocity v and pressure p have the representation,

v=vrv(0,9), p=p,+prrq0,), (la)
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FIGURE 1. Schematic of the similarity region in the round jet.

where (r,0, ¢) are the spherical coordinates (figure 1), p is the density, and v is the
kinematic viscosity. Substituting (1) and multiplying all terms by r*, one exactly
reduces the Navier—Stokes equations (NSE) to a set of equations for dimensionless
functions v and ¢, which replace velocity and pressure. The set becomes a system of
ordinary differential equations (ODE) for axisymmetric flows. Representations for
temperature, concentration and magnetic induction similar to that for velocity yield
analogous reduction of the heat, diffusion and MHD equations.

Note that all terms of NSE (except time derivatives) remain in the reduced equations,
and thus both diffusion and convection contribute to the ODE. These nonlinear ODEs
describe many important effects observed in practical flows including: development of
boundary layers, inner viscous layers, solution non-uniqueness, flow separation, vortex
breakdown, collapse (self-focusing of axial and angular momenta), swirl generation
and magnetic dynamo. On the other hand, being drastically simpler than NSEs, the
ODE:s allowed a detailed analysis and even provide analytical solutions which help to
clarify the essential physical mechanisms involved in the above-mentioned effects.

Conical solutions are widely used for modelling technological and natural flows.
Schlichting (1979) applied his solution for turbulent round jets. Taylor (1950) posed a
conical problem for a liquid fuel motion in a swirl atomizer. Goldshtik (1960) found
his paradoxical solution by investigating the wall effect in vortex reactors. Long (1961),
Serrin (1972) and Sozou (1992) modelled tornadoes by conical flows. Wang (1991) used
Squire’s (1952) solution to imitate the oceanic motion induced by a tanker crash.
Bojarevics et al. (1989) studied MHD conical flows for applications in electro-
metallurgy and plasmatrons. Conical solutions have been used to model flows in
electrosprays (Shtern & Barrero 19954) and vortex suction devices (Shtern & Hussain
1996).

Turbulence modelling

Since most of the practical flows mentioned are turbulent, their modelling includes
interpreting of v as the uniform eddy viscosity », (Schlichting 1979; Serrin 1972;
Burggraf & Foster 1977). The r-independence results from conical similarity (which is
observed not only in the mean velocity field but also in turbulent fluctuations): v, is the
product of velocity and length scales of turbulent fluctuations — the length and velocity
scales are proportional to r and ' in conical flows. The ¢-independence follows from
axisymmetry. In general, v, is a function of the polar angle ¢ but this dependence can
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FIGURE 2. Schematic of the similarity region, r, < r <r,, in the confined flow.

0>

be ignored in rough approximations, especially if the flow is slender. For example,
uniform v, for the round turbulent jet leads to satisfactory agreement with experiment
(Schlichting 1979).

Invariants

Conical similarity indicates that such flows depend on a few control parameters only.
Far from boundaries, a flow is typically oblivious of most of the constraints posed by
boundary conditions; however, the flow depends on invariant characteristics, such as
the flow force and circulation. This feature leads to similarity of many practical flows,
and justifies and helps to obtain similarity solutions. In particular, Schlichting (1933)
and Landau (1944) deduced their analytical solutions by exploiting the invariance
of the flow force, and Long (1961) generalized this approach for swirling jets having
r-independent circulation.

Similarity regions

Typically, similarity occurs in a part of the flow region away from boundaries.
Figure 1 shows this schematically for a round jet. Similarity is absent in region 1 (near
nozzle 4) and region 3 (near ambient body 5 or bounding wall) but occurs in the
intermediate region 2, r; <r <r, A necessary condition for similarity to occur is
r,/t; 1, wherer,is proportional to the nozzle radius and r, is the typical distance from
the nozzle to ambient bodies. The entrainment flow induced by a jet or a plume can
be conically similar as well (Schneider 1981; Schneider, Zauner & Bohm 1987).

Similarity regions exist also in confined flows. Figure 2 shows the flow studied both
experimentally and numerically by Bojarevics et al. (1989). In the experiment, mercury
filling a hemispherical copper container is in circulatory meridional motion (the closed
curves represent typical streamlines) driven by the electric current (rays) from electrode
A to wall C. Bojarevics et al. revealed that this steady axisymmetric flow is close to that
described by the conically similar solution (Sozou 1971) except in the vicinities of 4 and
C (r <r;and r > r, in figure 2). As the Reynolds number increases, the thickness of
these vicinities (typical of boundary layers) decreases.

Conditions at boundaries of similarity regions

It follows from (1 @) that conical flows satisfy the relation 0V /dr = 0, V' = rv. Using
this relation as the boundary condition,

oV/or=0 at r=r, r=r, (1b)

one can view conical flows as solutions of NSEs in a bounded three-dimensional
region. Also, conditions,

V(r) = V(r,), oV/or(r,) =0V /or(r,), (1e)
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are consistent with (1a). We apply (15, ¢) to study transitions between conical
solutions in §7.

Inner and outer disturbances

In practical flows, (1a) is valid inside a similarity region, but real conditions at r =
r; and r = r, differ from (15, ¢) and thus generate disturbances. The question is how
these disturbances influence the flow in r, < r < r,. The similarity flow is unstable if
disturbances increase as one moves from r = r; or r = r, to within the similarity region.
This paper addresses particularly this point: it considers how inner (i.e. given at r =
r;) and outer (at r = r,) disturbances influence conical flows as a function of control
parameters, say, Reynolds number Re.

First, we consider time-independent infinitesimal disturbances whose normal modes
are proportional to r* where « = o, + i, are eigenvalues to be found. As is typical of
the spatial instability, there is an infinite set of eigenvalues with «, < 0 and another
infinite set with o, > 0. This is due to the fact that NSEs are elliptic: both the inner and
outer boundary conditions influence the solution. For stable similarity flows,
superposition 2'_ of the modes with a, < 0 is the contribution of disturbances given at
the inner boundary, r = r,, which decay as r increases, while superposition 2, of the
modes with o, > 0 is the contribution of disturbances given at the outer boundary,
r = r,, and decaying as r decreases. The existence of eigenvalues with both «, < 0 and
a, > 0 need not imply any instability. Instability and bifurcation of new solutions occur
only when «, changes its sign at Re = Re,,. The ‘inner-mode instability’ occurs when
a, <01in 0 < Re < Re,, and o, > 0 for Re > Re,,, while the ‘outer-mode instability’
occurs when o, > 01in 0 < Re < Re,, and «, < 0 for Re > Re,,. We find both the inner
and outer instabilities of conical flows induced by steady disturbances in §§4-6. Then
we verify the nature of instabilities and bifurcation at Re = Re, by studying the
spatiotemporal nonlinear evolution of growing modes in §7.

Although limited to steady-state bifurcation, this approach can treat many kinds of
instabilities observed in practical flows. It has long been established that steady-state
bifurcation occurs owing to the thermogravitational and Taylor—Gortler instabilities
(Drazin & Reid 1981). Secondary stationary flows also develop owing to the cross-flow
instability on swept wings of aircraft and near rotating disks (Gregory, Stuart &
Walker 1955). Other examples of steady bifurcation which closely relate to conical
flows — azimuthal symmetry breaking, hysteresis, onset of convection, swirl generation
and MHD dynamo — are reviewed below.

1.2. Steady bifurcations in conical flows
Plane-diffuser flow

The Jeffery—Hamel solution, modelling the diverging flow in a plane diffuser, exists
for small, but not for large, Re = Q/v, Q is the flow rate (Hamel 1916). This striking
fact is occasioned by the occurrence of a fold catastrophe (merging and disappearance
of two solutions) at Re = Re;. At Re = Re, < Re;, the diverging-flow solution
becomes unstable to asymmetric disturbances. In Jeffery—Hamel flow, the fold and the
symmetry breaking both result from steady-state subcritical bifurcations (Hooper,
Dufty & Moffatt 1982).

Divergent instability

Symmetry breaking in Jeffery-Hamel flows is a specific manifestation of the
azimuthal instability occurring in radially diverging flows. This instability is possibly
one of the first documented in the literature. Thompson (1855) observed spreading of
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alcohol (introduced by a capillary tube) from the centre of the water surface in a
wineglass. He found ‘by the motion of the powder, one, two, three, or many radial
streams flowing outwards from the middle, and other return streams or eddies flowing
backwards to the margin of the patch’. Pshenichnikov & Yatsenko (1974) repeated this
experiment and photographed the flow patterns. They gradually increased the flow rate
and measured the critical flow-rate values at which the number of eddies changes from
2 to 10. The motion becomes unsteady for larger flow-rate values. Shtern & Hussain’s
(1993) analysis of the axisymmetry breaking showed agreement with the experimental
results of Pshenichnikov & Yatsenko. The divergent instability typically leads to steady
secondary flows.

Hysteretic transitions

A known problematic feature associated with natural and technological swirling
flows is multi-stability, i.e. existence of several stable states for the same values of
control parameters. External disturbances or even continuous variation of the control
parameters can cause abrupt switching between the states. Hysteretic transitions occur
in leading-edge vortices of aircraft (Lowson 1964), in tornadoes (Burggraf & Foster
1977) and in vortex chambers (Goldshtik 1990). This phenomenon corresponds to
solution non-uniqueness and fold bifurcations in mathematical models, e.g. inviscid
studies of vortex breakdown (Saffman 1992), numerical simulation of viscous swirling
flows in a diverging pipe (Beran & Culick 1992), and conical solutions for tornadoes
and suction devices (Shtern & Hussain 1996). These folds are also examples of the
steady-state instability.

Swirl generation

A striking example of symmetry breaking is the appearance of swirl in swirl-free
flows. Bojarevics et al. (1989) found experimentally (see §1.1 and figure 2) that no swirl
is observed for the total electric current J, < 15 A, but the meridional motion is
accompanied by swirl for J >15 A. While the swirl velocity increases with J, flow
stationarity occurs for a wide range of J.. A similar effect occurs in conical menisci of
electrosprays as electric potential increases (Fernandez de la Mora, Fernandez Feria
& Barrero 1991). These effects stimulated research of the swirl development in conical
similarity flows. The conical models (although strong idealizations of practical flows)
demonstrate an analogous phenomenon — a pitchfork bifurcation of swirl (see §§5 and
7.2). Steady-state bifurcation in conical flows also leads to the appearance of a
magnetic field in primarily non-magnetic flows and to the onset of heat convection
(Goldshtik & Shtern 1993).

Thus, steady bifurcation involves many flow instabilities of practical and
fundamental interest. Analysis of growing disturbances helps to clarify the physical
mechanisms of these instabilities, but meets some difficulties. Early efforts to overcome
these difficulties are reviewed below.

1.3. Instability of conical flows

Non-parallelism

The major difficulty in the stability analysis is the strong non-parallelism of conical
flows. Classical linear hydrodynamic stability methods address mainly parallel flows,
allowing reduction of partial differential equations for disturbances to ODEs such as
the Rayleigh and Orr—Sommerfeld equations (Drazin & Reid 1981). Since many
practical flows are nearly parallel, most research employs a small-parameter technique,
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using different kinds of quasi-parallel approximations. One of the recently improved
techniques is the parabolized stability equations (Bertolotti 1995).

Quasi-parallel approach

The quasi-parallel stability approach is an effective tool for studying some conical
flows that are nearly parallel, e.g. Jeffery—-Hamel flow in a slightly diverging channel
and axisymmetric jets consolidated near the axis. Regarding Jeffery—Hamel flow, see
e.g. Georgiou & Eagles (1985). Numerous works (Foster 1993; Khorami & Triveli
1994; Ardalan, Draper & Foster 1995; also references therein) have studied the
temporal instability of Long’s vortex under the quasi-parallel approximation.
However, as flow divergence increases (e.g. in wide-angle diffusers), this approximation
becomes questionable.

Steady disturbances

A specific feature of conical flows is that their steady instability can be studied
without the quasi-parallel approximation (§2.3). This feature was effectively exploited
in stability studies of Jeffery—Hamel flow (Dean 1934 ; Banks, Drain & Zaturska 1988).
Drazin, Banks & Zaturska (1995) have also formulated a spatial stability approach for
Long’s vortex without quasi-parallel approximation.

These earlier approaches were limited to specific conical flows and instabilities. The
studies of Jeffery—Hamel flows addressed only two-dimensional disturbances. The
approach by Shusser & Weihs (1995) captured three-dimensional disturbances but only
for irrotational planar basic flows. The technique of Drazin et al. (1995) was limited
to flows in a half-space. Studies of the spatial instability addressed only disturbances
given at a small r and developing with increasing r. Here, we develop a general and
effective method encompassing all conical flows and all types of steady and weakly
unsteady disturbances.

Note that the steady instability often occurs at smaller Re than that for the time-
oscillatory instability. In particular, this applies to source and sink flows (Shusser &
Weihs 1995), and to Jeffery—Hamel flow, except in diffusers of very small angle
(Georgiou & Eagles 1985). Observations of secondary steady flows (§1.2) also show
that steady-state bifurcation can occur at smaller Re than that at which unsteady flows
develop.

The classification of spatial modes into ‘inner’ and ‘outer’ is important for
understanding the instability mechanism in conical flows. To reveal where the origin
of the spatial instability is located, we study the dependence of flow disturbances on Re.
If one addresses disturbances at a fixed Re only, an unstable inner mode can be
confused with a stable outer mode. To avoid such a confusion, we start with Re = 0,
considering disturbances of a fluid at rest where the mode classification in unambiguous
because of the physical reasoning. After the mode identification, we increase Re
looking for the mode — inner or outer — that causes the instability. As Re grows, inner
and outer modes can merge; we call such merged modes global.

Summary of the approach

Thus, the goal of this paper is to develop an effective general method for studying
the steady instability of conical flows. This involves derivation of a new form of NSEs
allowing the exact reduction of the linear stability problem to ODEs (§2), classification
of modes into inner and outer based on analytical solutions for disturbances in a fluid
at rest (§3), and investigation of the mode behaviour as Re increases. The particular
instabilities studied here are fold catastrophes and bifurcation of In r-periodic steady
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states in swirl-free jets (§4), swirl bifurcation (§5) and divergent instability (§6). Then
the spatiotemporal evolution of instability modes in the vicinity of Re = Re,, is studied
(§7). The new results are discussed in §8 and summarized in §9.

2. Problem formulation
2.1. New form of the Navier—Stokes equations
Consider the Navier—Stokes equations (NSE),

w/ot+w-V)v+Vp/p—vdv =0, V-v=0,

for a viscous incompressible fluid. A steady axisymmetric conical flow having the
representation (1a) is the “basic’ solution whose stability is studied. We consider flows
in a region bounded by an impermeable conical surface, & = 0,. For flows driven by
shear stresses given on the cone surface, the tangential velocity is non-zero at 6 = 0,.
For flows driven by body forces, the no-slip condition is satisfied at 0 = 6,. We consider
the entire range, 0 < ¢, < 180°. The basic solution is characterized by Reynolds
number Re, which will be defined for each problem considered.

The equations for finite-amplitude disturbances u of basic flow v can be written in
the form

ou/ot+-Vyu+w-VYvo+Vp/p—vAu+wu-VIu=0, V-u=0,

The linear stability theory addresses infinitesimal disturbances for which the term,
(u°V)u, is negligible. The Re = 0 case means the absence of a basic flow, i.e. v = 0 and
hence the second and third terms disappear. We mainly consider steady disturbances,
ou/0t = 0, except in §7.

To ease the stability analysis, it is convenient to modify both the dependent and
independent variables by introducing

E=1In(r/r), x=cosl, T=vt/r2, u(x,¢,&71)=0v,r/v, y(x,$,&7)=0,rsind/v,
F(xa ¢’ & T) = v¢rsin (9/]/’ q(x’ ¢a g, T) = (p _pac) rz/(pvz)'
(2)
The use of r, makes the argument of the logarithmic function and 7 dimensionless.
However, it will be shown that the results are independent of this lengthscale.
Dimensionless functions (u, y, I') and ¢ replace the velocity components (v,, vy, v,) and

pressure. (Note that the azimuthal angle ¢ is not transformed.) Substitution of (2) in
NSE in the spherical coordinates (see, e.g. Batchelor 1967) yields the system,

Ve =utu+I,/(1—x7), (3a)
(=X u,, = 2x—y)u, — gy — i+ ur,—u* —2q + g,
+(Luy—y* = I —uyy) /(1= x7) +u,exp (26) + /i, (30)
A=x) T, =ul =yl + Te— e —2u,+q,+ T, —2xy,—1,,)/(1—x%)
+ 1" exp (29), 3Bo)
(1-x%q,=(1 _Xz)(“x_”xg)_Fx¢+uJ’g_y“g_yu+yg_ygg 3d)

+ vy =y —x(*+1*) =41/ (1 —x*) +y, exp (2£) +/0,
where the subscripts denote differentiation with respect to the corresponding variables.
The radial fr and meridional /¢ components of body forces in (35) and (3d) will be
specified for individual problems. There is no azimuthal component of body forces in
the problems considered.
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System (3) is a specially derived form of NSE for stability studies of conical flows.
The advantage of (3) is that coefficients of its steady form (where u, = 1", =y =0)
depend on only one independent variable, x, as distinct from the coefficients of the
classical spherical form of NSE, which depend on two coordinates, r and 6. Solutions
of (3) for axisymmetric conical flows, considered here as basic solutions, also depend
only on x. Linearization of (3) for steady disturbances of the basic solutions leads to
a system whose coefficients, again, depend only on x. Thus, the transformation allows
the normal (exponential) form for infinitesimal disturbances with respect to £ and ¢
when one studies the steady instability of conical flows.

2.2. Equations for basic flows

Since basic solutions are rotationally symmetric, the Stokes stream function ¥ can be
introduced as ¥ = vriy(x) for these flows. The dimensionless meridional and radial
velocity components then become: y = — i, u = —y’" (where ()’ = d()/dx). It appears
convenient (Goldshtik 1960) to introduce an auxiliary function F (equation (4 b) serves
as the definition of F) instead of ¢. Then (3) is reduced for the basic flows to the ODE
system:

(I=x3) ' +2xpy -y =F, (1=x)F" =2IT"+f,, (1-x)I" =yI". (4a—c)

The last term in (4b) represents (reduced) body forces. Specific solutions of (4) are
described below.

2.3. Equations for disturbances

We use the following normal form to study the linear instability of the similarity
solutions with respect to steady disturbances:

u = uy(x) +uy(x) exp (ag+img)+-c.c.,
Y = yy(x) +ya(x) exp (af +imep) +c.c.,

q = q,(x)+ q,(x)exp («&+im¢)+c.c.,
I' = I'y(x)+1l y(x)exp (z§+img¢)+c.c.,

)

where c.c. denotes complex conjugate terms, m is integer, o is complex, and subscripts
b and d indicate functions related, respectively, to the basic flow and to disturbances.
Substitution of (5) reduces the linearized version of (3) to

Vo= U+a)u;—mIl,/(1—x?), (6a)
(I=x®uy = Cx—y)u;+[(a—2)uy+p,—a—alu;—u,y, + (@ —2) q,—p,, (6b)
(1=x» T = (auy+ps) L=y, T+ QL —py) vy —2mu, +mq,, (6¢)
(I1—=x¥q,=1=-xA—a)u+[p;—(1—a)u,] y,—(1 +o¢)yhud—xp4+m1"(fi+p31;d6,d)

where
py = (imly+m*)/(1=x%), p,=2mx/(1-x%), p;=my,/(1-x?),

Py =20,y +il, I)/(1=x%), p,=a—a’+p,.

2.4. Boundary conditions

Boundary-value problems are considered for (4) and (6) in the region, x, < x < 1,
x, = —1. Boundary conditions applied at x = x, and x = 1 are listed below.
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2.4.1. Velocity boundedness

The axis of symmetry corresponds to the singularity points, x = + 1, for (4) and (6).
If there is no given singularity on the axis, the solution must be regular at x = + 1. This
leads to the conditions,

Yp=I'=F=F =0 at x=1 (7a)
for the basic flows. Owing to the singularities of (4) at x = 1, there are four conditions
in (7a), but there is also an additional parameter y’(1) which cannot be found from
(4a) owing to the 0/0 indeterminacy. Therefore y/'(1), I"’(1), and F”(1) are parameters
which must be adjusted to satisfy the conditions at x = x.,.

For velocity disturbances, the boundedness requirement yields at x = 1:

1)=T,1)=0. 7h
It follows from (65), Ya(D) (D) (7b)

u,(1)=0 for m=#0, (70)
¢

fo=2u,(D)+[(c—2) u,(1)—a—au,(1)+(x—2)g,(1) =0 for m=0.
To start integration from x = 1, one also needs uj(1), I';(1) and g,(1). Their values

should at first be guessed and can then be adjusted to satisfy the conditions at x = x,.
The conditions at x = x, for different problems studied below.

2.4.2. No slip
When the no-slip condition is applied on the cone surface, one obtains
Yy=I'=F=0 at x=x, 8a)
Vao=13=u;=0 at x=x,. 8b)

2.4.3. Stress-free boundary
The shear stresses on the cone surface (as on a free surface of a liquid meniscus) are
Ty, = pV[r100,/00 +10/0r(v,/r)] = pr*(r*sin0) [y, — 2y — (1 = x*) u,], Va)
Tys = pr1~[sin60/00(v,/sin 0) + (sin 0) ' v,/ Ag]
= —pv*(rsin0) (1 —x*) I, +2xI"+y,]. 9b)
Our study includes basic flows driven by shear stresses given at x = x,. These stresses

are fixed as the flows are disturbed. The impermeability and stress-free conditions lead

to
Y=y =(1—x)I"+2x'=0 at x=x,. (10a)

Va=uy=1=x)T,+2x; =0 at x=x,. (10b)
2.4.4. Given flow force

For the Landau, Squire, and Long jets, the axial flow force J is given. To express J
in terms of the new variables:

J=2nr* IlI,,dx =2npv*J, Jy= jdx, II,,=1II,.cosO0—1II,sin0,

where the integration range is from x, to 1, and 11;; is the projection of the flow force
per unit area acting on an infinitesimal planar surface with normal vector 7;, on the
j-axis. Since

I, = pvi+p—2pvr—'0v,/r = pr*r *[u*+ g+ 2(u—uy)],

1, = po,v,— prlrd Jor(w,/r) + 17 100,/00] = pr(r2 sin 0) [uy— v, + 2y + (1 —x?) u, ],

we find )
J=xu+2)+q—2u]—yu+2)+y,—(1-x*u,. (11
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Relation (11) resembles that used by Shtern & Hussain (1996), where u, y, and ¢ were
functions of x only, unlike in (2). The flow force being fixed as the flows are disturbed,
disturbances must satisfy the condition

Jp= Wa—=2—u) y, +2x(1 —a+u,) =y, u; — (1 —x*)u; + xq,} dx = 0. (12)

A similar condition was used by Drazin et al. (1995) while studying the stability of
Long’s vortex. These integral conditions for the flow force here replace the conditions,
Y¥” =0 and u; =0, in (10).

2.4.5. Eigenvalue problem

The conditions for disturbances (e.g. (76, ¢) and (8b)) and equations (6) form a
closed problem which admits the trivial solution, u; =y, =¢,=1,=0. To find a
non-trivial (eigen) solution for the normal modes, look for (complex) eigenvalues o =
o, +1a.

2.5. Invariant features of the stability problem
The meridional motions of the basic flows are invariant with respect to the sign of
circulation, and the stability problem is invariant to the transformations: {I, —~— 1),
and complex conjugation} or {m—-—m, I,—~—1, and complex conjugation}.
Therefore, it suffices to consider only /3, = 0 and m > 0.
For m = 0, the stability problem has the analytical solutions,

a=2, g;=const, y,=u,=1,=0, (13a)
a==1, y,=1,=0, q,=2u,+C, (13b)

where u, is a solution of (6 ) satisfying the boundary conditions, and C, is an arbitrary
(non-zero) number. It is clear from (13) that these eigenvalues do not depend on the
basic flow and are not related to any instability.

For the appropriate physical interpretation and classification of the normal modes,
it is useful to start from the case when the basic state is the fluid at rest. Physical
reasoning leads one to expect this state to be stable, which helps in a straightforward
classification of the modes. Also, analytical solutions for the fluid at rest (§3) serve as

checks for further numerical results in §§4-6.

3. Stability of the fluid at rest
3.1. Modified equations for disturbances
To study the response of the fluid at rest to infinitesimal disturbances, we eliminate all
terms related to the basic flow in (6). To ease the analysis that follows, it is useful to
make the additional transformations,
u,=1+a)uy;, q,=q,—1—a)uy,,
which reduce (6) to the system,

Vo=, —mI,/(1—x?), (140)
(L=x*) 1y, = 2xu), + pyut, + Py 4y, (140)
(1=x¥I) =p, I, —2mxy,/(1 —x*)—mu, +mgq,, (14¢)
(1=x3) ¢, = pyyy+ml, (14d)

whose coefficients p, = p, +1—&% p, = p, —2a*—3, and p, = &*—$ are even functions
of & = a—1. This renders obvious the fact that the eigenvalue spectrum is symmetric
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with respect to line o =} on the complex plane («,, «;), if boundary conditions for

disturbances are also even functions of &. Below, we show analytical solutions of (14)
for different boundary conditions that will be used as starting and checking points for
the numerical calculations that follow.

3.2. Spectrum for the unbounded still fluid

First, consider the case when the fluid occupies the entire space, i.e. x,=—1 and
—1 < x < 1. The requirement of velocity boundedness on the axis, x = +1, yields
ya(£ 1) =I(£1)=0. (15)

For u, and ¢, (7¢) transforms to
u,(£1)=0 for m#0

‘ (16)
+2u,(£1) = 20—+ u, (£ 1) —p,q,(£1) at m=0,

and, therefore, the spectrum is symmetric with respect to the line o« = 3.

The eigenvalues o of (14)—(16) are integers and the eigenfunctions are (Legendre)
polynomials (Happel & Brenner 1986, §3-2). Some of the eigenvalues corresponding to
conservation laws are common for Re # 0 as well. Also, the multiplicity of eigenvalues
at Re = 0 must be taken into account for calculations of « in the vicinity of Re # 0.
Now we briefly review the features of the Re = 0 spectrum which are important for the
stability study of conical flows in §§4-6.

3.2.1. Disturbances of swirl

In the simplest case, m = 0, the meridional motion and swirl are uncoupled. For
swirl modes, I" = r*[",(x), one can use y, = u, = q, = 0, and (14¢) becomes

(1—x)T = (@—a?) T, (17)

We denote eigenvalues as a.,, where + indicates sign of a, m is the azimuthal

wavenumber and n denotes the number of the I',(x) =0 roots in —1 <x < 1.
Eigenvalues of (17) with condition (15) are integers, given by

g, =n+2, o,,=n—1 with n=0,1,2,..., (18)
Both «;, and «,, correspond to the eigenfunction
Fd = (1 _x‘Z) Pn(x)a (19)

where P,(x) is a (even and odd) polynomial of power n (for even and odd »). For fixed
n, the positive and negative eigenvalues (18) correspond to the same eigenfunction,
because the value of a —a? (= 1—(x—3)%) in (17) is the same.

The case n = 0 is of special interest, since this solution explicitly follows from the
conservation of angular momentum. Indeed, the eigenfunction I, = C(1 — x?) describes
solid-body-type distribution of swirl on a spherical surface r = r,, while a.f, =2 (I' =
Cr?sin®#) corresponds to solid-body-type rotation inside the sphere r < r,. For this
solution, the angular momentum flux through r = const < r, is zero. The eigenvalue
oy = —1 (I"= Cr7'sin*#) corresponds to the distribution of swirl for r > r,, with the
angular momentum flux (~ r?07°/dr) through any surface surrounding the sphere
remaining constant. Conservation of angular momentum implies that the eigenvalues,
a =2 and o = —1, (but not their eigenfunctions!) are the same for all x,. Numerical
calculations agree with this feature (see §3.3 and figure 3).
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3.2.2. Disturbances of the meridional motion

One can use /; = 0 and introduce the stream function: u, = —¢', y, = —(1 + ) .
Then (14) reduces to

(I=x)y"" —4xy” = p2y" = 2+p) /(1 =x*)], p=o(l—a). (20)

One special solution demands our attention: ¢ = C(1—x?%) at « =0 and « = I.
There are no such eigenvalues for swirl modes; moreover, these eigenvalues are simple
(in contrast to others which are triple). It is easily shown that o = 1 corresponds to a
uniform flow directed along the symmetry axis. The case o« = 0 corresponds to a flow
induced by a point source of the axial momentum, i.e. Landau’s jet for Re 1. If the
axial momentum flux is fixed (a natural requirement for an entire-space problem), then
the disturbance with o = 0 is not allowed. Therefore, neither of these cases is relevant
for our study.

Another special eigenvalue is oy, =—1, where y, =0, ie. (15) is satisfied
automatically. There are three eigenfunctions at o,, =—1: (i) u, = const, g, =0,
corresponding to a flow induced by a point source of fluid, (i) ¢ = Cx(1—x?),
corresponding to a dipole source of the axial momentum, and (iii) y =0, I, = 1 —x?,
described in §3.2.1. According to the symmetry of spectrum, o, = 2 is also a triple
eigenvalue. When we consider the other special solution, (134), it becomes evident,
owing to physical meaning (angular momentum conservation and uniform pressure),
that the eigenvalues, oy, = — 1 and o, = 2, exist for arbitrary basic flows.

3.2.3. Azimuthal disturbances

The eigenvalues for m > 1 are also integers as are those for m = 0. In particular,

i ) el . . D
oo = 1 —m and o}, = m with the eigenfunctions:

u, =(1=x)"2 yy=x(1=x"2/(m+1), I,=1-x)""/(m+]1),
¢ = (1=x3)"*m—1)/(m+1).

Here the integration constant is chosen via the normalization, ,(0) = 1. There are also

eigenvalues, o,,, = | —m—n and o,, = m+n, n =1,2,..., whose eigenfunctions are

those in (21) multiplied by a polynomial of power n. Some of the solutions (21) have

simple physical meanings. In particular, consider m = 1 when the solutions are:

{ayy— =0, wuy=q,=2,=0=x)"7 p,=x(1—-x*"2,
eyt =1, u,=I,= (1 _x2)1/2’ Ya = x(1 _x2)1/2’ qq = 0}

The ‘neutral disturbance’ with o, = 0 is similar to that with « = 0 in §3.2.2, but now

the jet axis is positioned on the equatorial plane. The mode with « = 1 corresponds to

a uniform flow directed along a normal to the z-axis. Solutions (22) exist also for some
basic flows but are not related to any instability or bifurcation.

21

(22)

3.3. Spectrum for a conical region

For the problem in the half-space, 0 < x < 1, with the symmetry (i.e. stress-free)
condition, ¢y =" = I'; = 0 at x = x, = 0, the solutions are the same as those for the
whole space but only with even # in (18). For the no-slip condition, ¥(0) = y'(0) =
I',(0) = 0, the solutions for swirl are again the same as those for the whole space but
this time only with odd n. The solutions for meridional motion correspond to all
n = 2 but now there is just one eigenfunction for each eigenvalue. For a flow in the
region, x, < x < 1, x, # —1 and 0, we find o numerically. Since the triple spectrum
(at x, = —1) is degenerate, a change in x_, like any other modification of the problem,
transforms « into three (real or complex-conjugate) eigenvalues.



46 V. Shtern and F. Hussain

10
My,
S
My,
o 54
M,
/ Si My,
L
e e ]
0
-1 0 1
Xe

FIGURE 3. The eigenvalues o versus cone angle 0, (x, = cos@,) for axisymmetric disturbances
satisfying the stress-free conditions at x = x,. M and S denote the meridional and swirl modes. The
spectrum is symmetric with respect to the chain line (¢ = 0.5). Figures 3—4 depict a still fluid inside
the x = x, cone.

3.3.1. Shear-stress-free condition

First, we apply a special problem modification (unfolding) considering x = x, as the
impermeable and stress-free boundary:

Y(x) =0, y'(x) =0, (A=x)I50x)+2x,y(x,) =0, (23)

and conditions (15)—(16) at x = 1. These results will be useful in the later stability
analysis (§5). We apply the following numerical procedure. For the swirl modes, we
integrate (17) from x = x, with the initial conditions (23) and normalization I ;(x,) = 1.
Since x =1 is a singular point, we integrate (17) to x = x; = 0.9999 and apply the
extrapolation, I'y(1) = I'y(x;)+(1—x;) I";(x;). Now we consider this quantity °,(1) as
a function of «, and look for its zeros. To find these zeros numerically we apply the
Newton shooting procedure, using the previous solution as an initial guess, and
starting from the known analytical solutions. The analogous algorithm is used for the
calculation of meridional modes but in this case the shooting is multidimensional.
Figure 3 shows the dependence of a few eigenvalues on the cone angle; here M
indicates the eigenvalue relating to disturbances of the meridional motion, while S
denotes that relating to swirl. The first index can be any integer and labels eigenvalues
of the swirl modes as « increases; the second index equals 1 or 2 and denotes the
corresponding two modes of the meridional motion. Value 1 of the second index
corresponds to the smaller power of a polynomial for ¢(x). This numeration of the
modes is made at x, = 0. The triple eigenvalue, « = 4 at x, = 0, splits into three simple
eigenvalues (S,, M,,,M,,) for x, # 0. The triple eigenvalue, « = 2 (at x, = 0) splits into
one simple (M,,) and one double (S,, M,,) eigenvalue, the letter being the same for all
X.. The double eigenvalue occurs because both the rigid-body rotation (mode S,) and
the uniform change of pressure (mode M,,) satisfy all the boundary conditions. For
negative o one must recognize that the curves in figure 3 are symmetric with respect to

the chain line, o = 3.

3.3.2. Unfolding under the condition of zero flow force

In some basic flows, the flow force is given and fixed (§5) and, therefore, must fulfil
(12). Since only three conditions can be set at x = x,, (12) must replace one of the
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FIGURE 4. The real part of a for flow-force-free disturbances of the meridional motion: ——, real «;
———, complex « (also in the following figures).

conditions given in (23). As the surface is impermeable and stress-free with respect to
swirl, it is reasonable to replace ¥"(x,) = 0 by (12), both being conditions for the
meridional flow. For the still fluid, (12) reduces to

Jo= {xq,—=2x(1 =)y’ — (2 =2) Yy + (1 =x*) "} dx = 0, 24)

where ¢, = (14+a)[2xy)" —2(c*—a+ 1)y —(1 =x) "] /[(c —3*—3—y" from (14b).
Condition (24) decreases the degeneracy of the spectrum and also breaks the symmetry
with respect to o = 3.

When we examine the whole space (x, = —1), we find that all the swirl modes of
§3.2.1 satisfy (24), since u,; = y,; = g, = 0. Similarly, the meridional modes of §3.2.2,
where ¢ is an odd polynomial of x, are all valid as (24) is satisfied automatically. For
even polynomials of x, (24) excludes the mode, ¥y = C(1 —x?), at o = 0 (‘Landau jet’)
but not at o = 1 (Gallilean transformation). It appears that other even polynomials
satisfy (24), so that eigenvalues are triple at x, = — 1. For x, # — 1, the eigenvalues
become simple, but different to that specified in §3.3.1.

Figure 4 shows the spectrum for a few meridional modes (the spectrum for swirl

modes is simple and is not shown). The solid curves correspond to real « and the

dashed curves show «, for complex a. The double eigenvalues o« =2 and 3 at x, = — 1
become complex for x, > —1. First, the double eigenvalues o =—2, —3,..., at
x. = —1 split into two separate real values as x, increases. Then the real eigenvalues
merge again, but form other pairs. For example, the solid curves, which start atoc = — 1

and —2, merge, followed by a dashed curve. Similar dashed curves, located below,
have not been calculated and indicate only the trends.

Note that the eigenvalue originating from o« = 1 at x, = — 1 remains real for all x,.
One can see that the corresponding curve in figure 5 intersects the line, « = 0, at x, = 0.
This ‘instability’ of the still fluid corresponds to a specific feature of the Squire jet at
x. = 0, namely, the existence of two solutions at any given J, > 0 and the absence of
any solution at J; < 0 (see §4).
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FIGURE 5. Non-uniqueness of the Squire solutions. Relations between the flow force J, and the
surface velocity Re at (a) x, = —0.707; (b) —0.2; (c) 0.707. , Numerical results; ———, asymptotes.
Insets show flow patterns for Re > 0 (the upper insets) and Re < 0 (the lower ones).

4. Axisymmetric instability of swirl-free jets
4.1. Swirl-free jet

When swirl I" and body force f, are absent, (4b) and (7 a) yield F = C(1 —x)®. Then the
analytical solution of (4a) is (Yatseev 1950; Squire 1952):

Y =20(1—x)[(1+x)"—(1+x.)"]/[c—(1+x)"] for C<3, (25a)
¥ =1—x)/2/In[(1+x)/(1+x)]—1} for C=1 (25b)
Y =2C(1—x)/{wcotGoIn[(1+x)/(1+x,))—1} for C>1 (25¢)
Here o = (1+n)/2, a=(1+x)"(1+n)/(1—n), o=in, n=(1—-2C)"*; and
Re=—C(1—x,)/(1+x,), (26)
where Reynolds number Re = rv,,/v = —/’(x,) is based on the radial velocity at the

surface, x = x,.

Features and applications of solution (25) depend on what serves as a control
parameter. If Re is the control parameter, then no regular solution exists for large
negative Re (negative Re corresponds to a flow converging to the symmetry axis along
the surface x = x,). The regular solution ceases to exist (i.e. ‘collapse’ occurs) at Re =
Re,, owing to the appearance of a singularity on the axis (Bratukhin & Maurin 1967).
As Re— Re,,, a strong near-axis jet develops, whose axial velocity becomes infinite at
Re = Re,,. It thus seems paradoxical that a singularity occurs in a viscous solution at
a finite Re.

This paradox is absent in the problem where the flow force J, (§2.4.4) is the control
parameter. The solution is regular for any J;, and as J, - co, Re has a bounded limiting
value, e.g. Re = —2 at x, = —1. However, there are other intriguing features, such as
solution non-uniqueness and hysteretic transitions.

4.2. Hysteresis
4.2.1. Solution non-uniqueness
The solution is unique for the Landau jet (x, = —1): each value of J, corresponds
to just one solution. This is also valid for flows above cones with angles in the range
0 < 0, < 180° (0, corresponds to a cusp catastrophe, see §4.2.2). Figure 5(a) shows
Re(J;) at x, =—0.707 (0, = 135°). The flow force J; varies from —oo to + o0, but
Re is bounded from below. As J,— oo, Re approaches the asymptotic value —3.3
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(dashed line 1) which corresponds to the collapse (§4.1) when Re is a control parameter.
As J,—— o0, Re approaches the asymptote (Shtern & Hussain 1996),

S =35 (1=x)"*(2Re)*”, 27)
(curve 2). The insets in figure 5(a) show the descending (J; < 0) and ascending (J, >
0) flow patterns.

As x, increases, relation Re(J;) qualitatively changes. Figure 5(b) shows Re(J,) at
x,=—0.2 (6, = 102°). The range of Re is again bounded from below by asymptote
Re =—5.9 (dashed line), but function Re(J;) is no longer single-valued: the
corresponding (solid) curve has folds £ and £. There are three different Re for each
J, in the range J,,,;, = —0.0094 < J < 18.5 = J,,,,.- In particular, there are three
solutions with zero flow force: the still fluid (Re = 0), and two descending flows with
Re =0.49 and Re = 98.

As one moves along the upper branch with increasing J,, it is impossible to avoid a
jump transition to the lower branch at F, (shown by an arrow in figure 5b). This
transition transforms the flow pattern from that shown in the upper inset of the figure
to that shown in the lower inset. Thus, it corresponds to a jump separation of the
outflow from the cone surface. Similarly, as one moves along the lower branch with J;
decreasing, an opposite transition is unavoidable at F (shown by an arrow in figure
5b): a jump attachment of the outflow to the cone surface. Hence, the intriguing
features mentioned above: solution non