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New solutions of the Boussinesq equations describe the onset of convection as well
as the development of collimated bipolar jets near a point source of both heat
and gravity. Stability, bifurcation, and asymptotic analyses of these solutions reveal
details of jet formation. Convection (with l cells) evolves from the rest state at the
Rayleigh number Ra = Racr = (l − 1)l(l + 1)(l + 2). Bipolar (l = 2) flow emerges
at Ra = 24 via a transcritical bifurcation: Re = 7(24 − Ra)/(6 + 4Pr), where Re is
a convection amplitude (dimensionless velocity on the symmetry axis) and Pr is the
Prandtl number. This flow is unstable for small positive values of Re but becomes
stable as Re exceeds some threshold value. The high-Re stable flow emerges from the
rest state and returns to the rest state via hysteretic transitions with changing Ra.
Stable convection attains high speeds for small Pr (typical of electrically conducting
media, e.g. in cosmic jets). Convection saturates due to negative ‘feedback’: the flow
mixes hot and cold fluids thus decreasing the buoyancy force that drives the flow. This
‘feedback’ weakens with decreasing Pr, resulting in the development of high-speed
convection with a collimated jet on the axis. If swirl is imposed on the equatorial
plane, the jet velocity decreases. With increasing swirl, the jet becomes annular and
then develops flow reversal on the axis. Transforming the stability problem of this
strongly non-parallel flow to ordinary differential equations, we find that the jet is
stable and derive an amplitude equation governing the hysteretic transitions between
steady states. The results obtained are discussed in the context of geophysical and
astrophysical flows.

1. Introduction
This paper deals with a very simple buoyancy problem: thermal convection near a

point source of heat and gravity. Despite its apparent simplicity, the problem is rich
in interesting effects such as hysteresis, flow reversal, and collapse; the most intriguing
among them is the development of highly collimated bipolar jets. We attempt here
to explain these effects with the help of exact solutions of the Boussinesq equations.
The spherical symmetry of the equilibrium state of rest and the conical similarity of
the emerging buoyancy-driven flow allow us to obtain analytical solutions for (i) the
linear stability problem of the rest state, (ii) the weakly nonlinear problem of flow
bifurcation, and (iii) the strongly nonlinear problem of the formation of high-speed
jets.

There is a practical relevance of this simple convection problem to geophysical and
astrophysical situations, particularly in the formation of collimated cosmic jets. This
relevance is discussed at the end of the paper.

Here, we present (i) a new stability approach for conically similar convection, (ii) a
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Figure 1. Schematic of the problem. The star 1 at the origin of spherical coordinates (r, θ, φ) denotes
a point source of gravity g and heat flux q, which, in the presence of swirl in the accretion disk 2,
induces bipolar helical convection (curves 3a and 3b).

new asymptotic technique for high-speed convection flows, and (iii) a new amplitude
equation governing hysteretic transitions between steady states. Using these tools, we
obtain analytical and numerical solutions that help explain the mechanism of jet
formation, particularly the development of bipolar collimated jets.

Following the problem formulation in § 2, we study the formation of jets via
instability and their bifurcation, hysteresis, and collimation in §§ 3–6. In § 3, we
consider the linear instability of the equilibrium state of rest and find critical values
of Rayleigh numbers Ra and neutral modes. Using a weakly nonlinear expansion,
we show in § 4 that the bipolar neutral mode transforms into finite-amplitude steady
convection via a transcritical bifurcation. The results for finite-amplitude convection
have been obtained numerically using the procedure described in § 5.1. These results
reveal the hysteretic nature of the appearance and disappearance of stable convection
(§ 5). We show in § 6 that this stable convection develops into a high-speed collimated
jet for small Prandtl number Pr (relevant to cosmic jets) and find asymptotic solutions
for this jet. In § 7, we consider swirl imposed in the equatorial plane (modelling the
accretion disk in cosmic flows) and show that with increasing swirl, the jet becomes
annular, and then flow reversal occurs on the axis. Finally, in § 8, we study the stability
of the convective flows, show that the jet is stable, and derive an amplitude equation
governing the hysteretic transitions between steady states. In § 9, we summarize the
results and discuss features of these buoyancy-driven jets in the context of geophysical
and astrophysical flows.

2. Problem formulation
The problem is schematically represented in figure 1. At the origin of the spherical

coordinates (r, θ, φ), we place a point source (PS, marked by a star symbol) of both
heat flux, q = γkr−2er , and gravitational acceleration, g = −δr−2er . Dimensional
constants γ and δ characterize the strength of q and g : γ = Q/4(πk), where Q is
the heat flux through a surface enclosing PS and δ is the PS mass multiplied by the
gravitational constant; er is the radial unit vector, and k is the thermal conductivity.
The ambient medium is a viscous fluid whose self-gravitation is neglected.
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We impose symmetry and impermeability conditions on the θ = 90◦ (equatorial)
plane 2 in figure 1 (modelling the accretion disk, see § 9). On this plane, we consider
three different boundary conditions for velocity: (i) stress-free, (ii) no-slip, and (iii)
potential-vortex motion. For conditions (i) and (ii), an equilibrium state of rest exists.
Conservation of Q yields that the temperature field of the rest state is T = T∞ + γ/r.
Since the temperature is infinite at r = 0, this model is the far-field approximation
where the distance from the central body is much larger than the radius of the body
(typical of point-source problems).

We apply the Boussinesq approximation, ρ/ρ∞ = 1 − β(T − T∞), where β is the
coefficient of thermal expansion. Then, the buoyancy force is F E = ρ∞ν2r−3Ger which
is balanced by the radial gradient of pressure. Here G = βγδ/ν2 is the Grashof
number, ν is the kinematic viscosity, and subscript E denotes the equilibrium state.

Now, we introduce a dimensionless temperature perturbation, ϑ, such that the total
temperature field is given by

T = T∞ + (1 + Prϑ)γ/r, (1)

where Pr(≡ ν/κ) is the Prandtl number and κ is the thermal diffusivity. Then, the
perturbed part of the buoyancy force (which may induce thermal convection) is
F C = ρ∞ν2r−3Raϑer; here Ra ≡ PrG is the Rayleigh number, and subscript C
denotes convection.

Since g and q have opposite directions, the thermal stratification is unstable when
Ra exceeds a critical value, and convection develops. Due to the presence of the disk,
the convection is bipolar, e.g. curves 3a and 3b in figure 1 depict streamlines of the
helical flow converging near the swirling disk and going away from the source along
the rotation axis z. The flow does not disturb the temperature field if Pr = 0; this is
a reason to put Pr before ϑ in (1).

To summarize, we study flows governed by the Boussinesq equations,

∂v/∂t+ (v · ∇)v = ν∆v + (F C − ∇p)/ρ∞, ∇ · v = 0,

∂T/∂t+ (v · ∇)T = κ∆T ,

}
(2)

where v = {vr, vθ, vφ} is the velocity, p is the perturbed pressure, and t is the time. To
find how these flows evolve, we start with the linear instability of the rest state where
v = 0.

3. Instability of the rest state
3.1. Critical values of the Rayleigh number

First, consider the onset of convection in the absence of the disk. In this case,
the spherical symmetry of the problem permits representation of the infinitesimal
temperature disturbances in the form

ϑ = Cf(r)Y m
l (x, φ) exp(λt). (3)

Here C is a constant, f is the unknown radial distribution, Y m
l are the spherical

harmonics, l and m are integers corresponding to the wavenumbers in the polar (θ)
and azimuthal (φ) directions (figure 1), x = cos θ, and λ (which is real in this case)
is the temporal growth rate. The velocity and pressure disturbances have similar
representations. Then, equations (2) reduce to a single ordinary differential equation
(ODE) for f(r) (Chandrasekhar 1981, p. 223). To find critical values of Ra, we consider
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Figure 2. Streamlines of axisymmetric convection, in the absence of the accretion disk, for neutral
modes with polar-angle wavenumber l: (a) l = 1, (b) l = 2, and (c) l = 3.

disturbances with λ = 0. This ODE can then be written as

D2
l [A(r)Dl(r

−1f)] + l(l + 1)Ra[rB(r)]−1f = 0, (4)

where Dl = [d/dr(r2d/dr) − l(l + 1)]/r2. Functions A(r) and B(r) depend on the
radial distribution of gravity and the equilibrium temperature. In our case where
A(r) = B(r) = r3 (because g ∼ r−2 and T −T∞ ∼ r−1), equation (4) admits power-law
solutions: f(r) = rα and we find the analytical relation between Ra and α

Ra = (α2 − l2)(1− l − α)(α− l − 2)[α2 − (l + 1)2]/(l + l2), l = 1, 2, . . . . (5a)

For neutral modes, the power-law dependence on r of the temperature disturbances
must be the same as that for the equilibrium temperature. Examining (1), we see that
ϑ must be r-independent, i.e. α = 0. Then (5a) gives the critical values of the Rayleigh
number Racr in the compact form.

Racr = (l − 1)l(l + 1)(l + 2), l = 1, 2, . . . . (5b)

To find the convection patterns emerging at Racr , we consider the neutral modes in
more detail.

3.2. Convection patterns

We start with l = 1 which corresponds to Racr = 0 according to (5b). The axisymmetric
(m = 0) neutral mode is

ϑ = x/2, {vr, vθ sin θ, vφ} = νr−1{x, (x2 − 1)/2, 0}. (6a)

We have taken C = 1/2 in (3) to normalize (6a) such that rvr/ν = 1 on the positive
z-axis, x = 1. Then, the Reynolds number Re ≡ rvr(1)/ν serves as a convection
amplitude. (Note that (6a) coincides with the (small-Re) solutions obtained by Landau
1944 and Rumer 1952.)

The neutral mode (6a) corresponds to the flow shown in figure 2 (a) (we depict only
one quadrant of the meridional plane, φ = const, since the streamline patterns are
symmetric with respect to both the abscissa and the ordinate). Being unidirectional,
this flow does not satisfy the condition of zero normal velocity on the plane z = 0 in
figure 1, so this solution is inappropriate for the problem with an impermeable disk.

For m = ±1, we obtain three-dimensional neutral disturbances of the form

ϑ = 1
2
(1− x2)1/2 cosφ, {vr, vθ sin θ} = νr−1{2ϑ, xϑ}, vφ sin θ = νr−1ϑ tanφ. (6b)
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This flow is the same as that described by (6a) but in the coordinate frame rotated
by 90◦ in the θ-direction.

Seeking a solution relevant for the disk problem, we consider the next value, l = 2,
which corresponds to Racr = 24 according to (5b).

Now the axisymmetric (m = 0) neutral mode is

ϑ = x2/4− 1/12, {vr, vθ sin θ, vφ} = νr−1{(3x2 − 1)/2, (x3 − x)/2, 0}. (7a)

The integration constant, −1/12, for ϑ is chosen to reduce the disturbance heat flux

to zero:
∫ 1

−1
ϑ dx = 0. Solution (7a) satisfies the impermeability condition, vθ = 0 at

x = 0 (see figure 2b) and is therefore relevant for the disk problem.
There are three-dimensional neutral disturbances with m = ±2:

ϑ = 1
2
(1− x2)1/2 cos(2φ), {vr, vθ sin θ} = νr−1{2ϑ, xϑ}, vφ sin θ = νr−1ϑ tan(2φ).

(7b)

For any l > 2, there are (i) an axisymmetric neutral mode with vr ∼ νr−1Pl(x),
where Pl(x) is the Legendre polynomial, and (ii) three-dimensional neutral modes
with m = ±l and vr ∼ νr−1(1 − x2)1/2 cos(lφ). As an example, the flow pattern for
the l = 3 axisymmetric solution is shown in figure 2(c). Note that l is the number
of convection cells for axisymmetric flows. The impermeability condition on the disk
permits only even values of l.

Now that we have investigated the neutral modes of the rest state, we examine in
the next section the nonlinear effects in the vicinity of Ra = Racr and, in particular,
the bifurcation character (supercritical, subcritical, or transcritical) for the l = 2
axisymmetric mode.

4. Weakly nonlinear analysis of convection onset
4.1. Weakly nonlinear approach

Since the problem has no length scale, the convection is self-similar. The linear stability
results (§ 3.2) show that this similarity is conical. Therefore, for steady axisymmetric
convection, the temperature and velocity fields may be represented as

T = T∞ + γr−1(1 + Prϑ), Ψ = νrψ,
vr = −νr−1ψ′, vθ = −ν(r sin θ)−1ψ, vφ = 0.

}
(8)

Here, Ψ is the Stokes stream function, ϑ and ψ (the dimensionless stream function)
depend only on x, and the prime denotes differentiation with respect to x. Substituting
(8) in (2), with some simple transformations, we obtain the ODEs

(1− x2)ψiv − 4xψ′′′ − (ψ2/2)′′′ = Raψ(1 + Prϑ)/(1− x2), (9a)

(1− x2)ϑ′ = ψ(1 + Prϑ). (9b)

We impose the conditions that the velocity must be bounded on the symmetry axis,
x = ±1,

ψ(±1) = 0, |ψ′(±1)| < ∞. (10a)

Further, the temperature disturbances must not change the global heat flux; this
yields the integral condition ∫ 1

−1

ϑ(1− Prψ′) dx = 0. (10b)
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For ease of analysis, it is convenient to introduce an auxiliary function F whose
third derivative equals the right-hand side of (9a), i.e.

F ′′′ = Raψ(1 + Prϑ)/(1− x2). (11a)

Then, equation (9a) is integrated three times to yield

(1− x2)ψ′ + 2xψ − 1
2
ψ2 = F. (11b)

To find the boundary conditions for F , we differentiate (11b), and use (10a) to obtain
F ′(±1) = 0. This new condition replaces that for ψ′ in (10a):

ψ(±1) = F ′(±1) = 0. (11c)

The condition ψ(±1) = 0 indicates that there is no fluid source on the z-axis, i.e. at
x = ±1. To physically interpret the condition F ′(±1) = 0, we calculate the tangential
stress τrθ = ρν[r−1∂vr/∂θ + r∂/∂r(vθ/r)] in terms of F ′. Using (8) and the derivative
of (11b), we find that τrθ = −F ′ρν2(r2 sin θ)−1. Thus, F ′(±1) = 0 indicates that τrθ is
bounded on the axis.

Finally, (11b) and (10a) yield

F(±1) = 0. (11d)

The problem (9b), (10b) and (11a–d) has the trivial solution ψ = ϑ = 0, which
corresponds to the rest state. However, at a critical value of Ra = Racr , a non-trivial
solution arises representing the onset of convection. To find analytical solutions for
convection of a small but finite amplitude, we apply the power-law expansion near
Ra = Racr ,

ψ = Reψ1+Re2ψ2+. . . , ϑ = Reϑ1+Re2ϑ2+. . . , Ra = Racr+ReRa1+Re2Ra2+. . . .
(12)

Here the Reynolds number, Re ≡ rvr(1)/ν (the dimensionless velocity on the positive
z-axis), serves as the small parameter. In (12), ψ1(= − vθr sin θ/ν) and ϑ1 are linear
solutions obtained in § 3.2, e.g. (7a). Therefore, we do not need to solve the O(Re)
equations (which follow from (9) by omitting the nonlinear terms). Using (12) and
(9), we obtain the O(Re2) equations,

(1−x2)ψiv
2 −4xψ′′′2 −Racrψ2/(1−x2) = (ψ2

1/2)′′′+ (Ra1 +RacrP rϑ1)ψ1/(1−x2), (13a)

(1− x2)ϑ′2 − ψ2 = Prψ1ϑ1. (13b)

Note that while ψ1 and ϑ1 are known, Ra1 still has to be determined. Since substituting
ψ2 = ψ1 makes the left-hand side of (13a) zero, equation (13a) is solvable only if
its right-hand side is orthogonal to the solution w of the adjoint problem. Since the
left-hand-side operator of (13a) is self-adjoint, we have w = ψ1. Multiplying (13a)
by ψ1 and integrating from x = −1 to x = 1, we reduce the left-hand side to zero
and find Ra1. Since the coefficient multiplying Ra1 is not zero (being positive), Ra1

is uniquely determined (as well as Raj for j > 1). Now ψ2 and ϑ2 are determined by
solving (13). Higher-order coefficients in (12) are obtained using a similar technique.
As the smallest Racr is physically important, we now consider in more detail only the
l = 2 case for the symmetry condition on the disk (figure 2b).
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Figure 3. Velocity (Re) on the positive z-axis vs. Rayleigh number Ra at Prandtl number Pr = 1:
(a) stress-free, (b) no-slip disk. The line Re = 0 represents the rest state, and curve ACFTD
represents convection with the l = 2 cells (insets, see also figure 2b). Solid and broken curves denote
stable and unstable solutions, respectively.

4.2. Bifurcation of bipolar convection

The results of § 3.2 (i.e. (7a) and Racr = 24) and the above expansion procedure yield

ψ1 = x(1− x2)/2, ψ2 = (5 + Pr)x3(1− x2)/112,

ϑ1 = x2/4− 1/12, ϑ2 = [(5 + 15Pr)x4 − 28Prx2/3− 1 + Pr/9]/448,

Ra1 = −(6 + 4Pr)/7, Ra2 = (560 + 57Pr + 244Pr2)/4704.

 (14)

Substituting (14) in (12), we note two important features:
(a) the bifurcation is transcritical (see the vicinity of point T in figure 3a), i.e. the

secondary solution exists for both Ra < Racr (branch TF) and Ra > Racr (branch
TD);

(b) the flow near the equatorial plane is converging for Ra < Racr and diverging
for Ra > Racr (see the insets in figure 3a).
The general theory (Chossat 1979; Golubitsky & Schaeffer 1982) predicts that the
secondary solution for |Re| � 1 is unstable with respect to axisymmetric disturbances
for Ra < Racr and with respect to the m = 2 disturbances for Ra > Racr (broken
curve FTD in figure 3a). However, as Re exceeds some threshold value, the flow
may become stable. Using (14) and neglecting higher-order terms in (12), we observe
that as Re increases, Ra first decreases, reaches its minimum, and then increases. In
order to examine the flow away from the vicinity of the bifurcation point T , we use
numerical analysis, which is discussed in the next section.

5. Development of bipolar convection via hysteresis
5.1. Numerical procedure

For the stress-free problem, we integrate (9b), (11a) and (11b) from x = 1 to x = −1,
with initial conditions (11c, d) and guesses for F ′′(1), ϑ(1) and ψ′(1). (Resolving the
0/0-type indeterminacy gives ϑ′(1) from (9b) and F ′′′(1) from (11a) but not ψ′(1) from
(11b).) To satisfy the three conditions (10b) and (11c) at x = −1, we adjust F ′′(1),
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ϑ(1), and ψ′(1) using the Newton shooting method. Ra and Pr are free (i.e. control)
parameters. In some instances, it is more convenient to use Re = −ψ′(1) as a free
parameter and to find Ra by the shooting method. Once a converged solution for
given parameter values is obtained by the Newton method, we gradually increase the
free parameter (e.g. Ra or Re) using the previous solution as an initial guess for the
following shooting. For numerical integration, we use the fourth-order Runge–Kutta
procedure and the Chebyshev grid with 200 steps. In order to check accuracy, we
have also used 400 steps and verified that all digits shown here for the numerical
results are correct.

5.2. Finite-amplitude convection above a stress-free disk

Figure 3(a) shows the numerical results for the stress-free case on the parameter plane
(Ra, Re) at Pr = 1. The equilibrium (rest) state E corresponds to the Re = 0 line.
At point T (separating the solid and broken parts of the Re = 0 line), transcritical
bifurcation of the l = 2 convection occurs. Curve ACFTD representing this convection
has two branches, FCA and FTD, which meet at fold F where Ra reaches its minimum
value RaF = 23.37 at Re = ReF = 0.922. The solid and broken lines in figure 3(a)
indicate stable and unstable solutions respectively. The equilibrium state is unstable
for Ra > 24 as shown in § 3, and the steady flow is unstable near T (as discussed
in § 4.2). Branch FCA is depicted by a solid line because the flow becomes stable for
Re > ReF (see § 8). Infinitesimal disturbances cause switching between the rest state
and the flow near points T and F (as shown by arrows FE and TC in figure 3). Thus,
a hysteresis loop exists composed of the stable states and the transient trajectories –
ETCFE in figure 3.

5.3. No-slip disk

In this case, we integrate (9b), (11a) and (11b) from x = 0 to x = 1 with the initial
conditions: ψ(0) = F(0) = 0 (no-slip), F ′(0) = 1 (normalization used at Re = 0 only),
and guessed values of F ′′(0) and Ra. Since x = 1 is a singular point of the equations,
an initial-value solution may be unbounded at x = 1. For this reason, the integration
is terminated at x = xf < 1 (say, xf = 0.9999), and then all necessary quantities (in
particular, ψ and F ′) are extrapolated to x = 1. To satisfy the condition F ′(1) = 0,
we adjust F ′′(0) by shooting. Then, we find the values of Ra (i.e. Racr) that make ψ
zero at x = 1: Racr = 60.89 for l = 2, Racr = 566.22 for l = 4, and so on. Recall that
l is the number of convection cells, and the presence of the disk allows only even l.
Next, we obtain solutions for Re 6= 0 using the Newton shooting procedure.

Figure 3(b), shows the numerical results for steady convection above the no-slip
disk at Pr = 1. An important difference with the stress-free disk (figure 3a) is that the
descending flow (branch TD) is stable. (Note that neutral modes (7b) do not satisfy
the no-slip condition and there is no growing three-dimensional disturbance near T
in figure 3b.) Thus, there are two stable convection states: ascending (A) along branch
FCA (see the upper inset in figure 3b) and descending (D) along branch TD (the
lower inset). Branch FT corresponds to the unstable solutions.

A common feature for both the cases of stress-free and no-slip conditions on the
disk is the development of stable ascending convection (branch FCA in figure 3) via
a fold bifurcation (at point F). Thus, in both cases, the flow appears (as Ra increases)
and disappears (as Ra decreases) via hysteretic transitions (arrows TC and FE ).
While the ascending flow (characterized here by Re) is moderate at Pr = 1 (figure 3),
the flow becomes high speed (i.e. Re� 1) and a strong near-axis jet develops as the
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Figure 4. (a) Dependence of the flow above the no-slip disk on Prandtl number Pr; (b) profiles
of the stream function ψ at the fold points in (a) (the Pr = 0.03 case being additional) showing
the development of the near-axis boundary layer as Pr → 0. Curve P depicts the polynomial
approximation, 10x2 − 6x3, of the Pr = 0 curve in (b).

Prandtl number tends to zero at a fixed Ra. The development and features of this jet
are explained below with the help of asymptotic solutions for large Re.

6. Development of strong jets
6.1. Role of the Prandtl number in the jet formation

There is a clear physical reason for the development of strong jets when the Prandtl
number Pr is small. While the linear instability of the rest state depends only on
Ra, the nonlinear saturation of convection depends on Pr as well. The saturation
results from negative ‘feedback’: convection mixes hot and cold fluids, i.e. reduces
temperature gradients, thereby reducing the buoyancy force that drives the flow.
The feedback strength depends on Pr: even weak mixing significantly changes the
temperature field for large Pr (e.g. in silicon oils) while the temperature field is
flow-independent at Pr = 0. (Note that in cosmic jets, heat transfer (which occurs
by radiation) is nearly flow-independent; a small effective Prandtl number may be
used to model this effect.) Thus, for small Pr, nonlinear saturation occurs only when
convection becomes high speed.

In turn, high speed convection causes jet collimation. The inflow and outflow have
nearly equal θ-extents in the case of low-velocity convection (figure 2b). As the velocity
increases, the entrainment effect causes self-focusing of the outflow while the inflow
extent expands and eventually occupies nearly the entire flow domain (figure 7). (Note
that narrow jet-like outflows and wide inflows are typical of point-source motion.)
This effect is especially strong for ascending convection where the outflow is localized
near the axis (while in the descending convection, the outflow is spread over the entire
disk). The near-axis outflow must be intense to balance the inflow rate.

Figure 4 illustrates the jet development as Pr decreases from 1 to 0 (see the
numbers near the curves) for the no-slip disk. To combine the numerical results
for small, large, positive and negative Re in one figure, we have used the rescaled
Reynolds number, Re∗ = Re/[1 + |Re|/ log(1 + |Re|)], for the ordinate in figure 4(a);
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note that Re∗ = 0.3Re for |Re| � 1 and Re∗ ≈ sign(Re) log |Re| for |Re| � 1 (compare
the values of Re∗ with Re, both of which are shown in figure 4a).

As Pr decreases, no dramatic change occurs in the descending flow (the Re∗ < 0
branch in figure 4a). In contrast, the ascending flow (the Re∗ > 0 branch) varies
significantly. To show how the flow pattern changes with Pr, figure 4(b), presents
profiles of stream function ψ at the fold points of figure 4(a). Recall that vr =
ν(r sin θ)−1 dψ/dθ; therefore, the locations of the ψ-maximum in figure 4(b) separate
the outflow (dψ/dθ > 0) and inflow (dψ/dθ < 0) regions. As Pr decreases, the
location of the maximum moves toward the axis (θ = 0), i.e. the inflow occupies
nearly the entire flow region. In the inflow region, vr (at a fixed r) is bounded as
Pr → 0. Since the outflow region reduces to the near-axis boundary layer whose
θ-thickness vanishes, vr increases, i.e. a strong jet develops whose maximum velocity
(Re) tends to infinity as Pr → 0.

For large Re, asymptotic analysis is used to obtain explicit relations between Re,
Pr and Ra, as detailed below.

6.2. Asymptotic solution for the near-axis jet

Consider the boundary layer solution, describing the near-axis jet. Suppose that
condition (11d ) remains valid in the limit Re→∞. Then introducing boundary layer
coordinate η ≡ Re(1 − x)(≈ Reθ2/2) and allowing Re → ∞ for a fixed η transform
(11b) to η dψ/dη = ψ(1 − ψ/4), whose solution, satisfying the condition ψ = 0 at
η = 0, is

ψ = ψi = 4η/(4 + η), (15a)

where the subscript i denotes the inner solution. (Note that (15a) coincides with the
round-jet solution by Schlichting 1933.)

As η → ∞, ψi → 4 according to (15a), and therefore, the outer solution, ψo(x),
must satisfy the condition ψo = 4 at x = 1, in accordance with the theory of matched
asymptotic expansions (Van Dyke 1964). The outer solution, ψo is discussed below.

6.3. Minimum Ra for convection to occur

In addition to ψo, we calculate the limiting value of Ra as Re→∞ along the Pr = 0
curve in figure 4(a). At Pr = 0, (11a) reduces to

F ′′′ = Raψ/(1− x2).

Substituting ψ = ψo yields the equation for the outer solution Fo:

F ′′′o = Raψo/(1− x2).

The boundary conditions for Fo are the same as those for F:

Fo(0) = Fo(1) = F ′o(1) = 0. (15b)

Since ψo(1) 6= 0, F ′′′o has a pole and F ′′o has a logarithmic singularity at x = 1. To
avoid these singularities in numerical calculations, we decompose Fo into singular and
regular parts: Fo = Fs +Fr. Let Fs satisfy (15b) and the equation F ′′′s = Ra4x/(1−x2).
Then integration yields

Fs = Ra[2x(ln 4− 1 + x)− (1− x)2 ln(1− x)− (1 + x)2 ln(1 + x)].

Now, the regular part, Fr must satisfy the equation,

F ′′′r = Ra(ψo − 4x)/(1− x2), (15c)
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and also the conditions (15b). Differentiating (11b) and using ψo(1) = 4 and F ′o(1) = 0,
we find that ψo(1) = 2. Then resolving the 0/0 indeterminacy in (15c) at x = 1 yields
F ′′′r (1) = Ra; thus F ′′′r is bounded (while F ′′′s is infinite) at x = 1.

To calculate ψo we apply (11b) in the form

(1− x2)ψ′o + 2xψ−1/2
o ψ2

o = Fs + Fr. (15d)

Equations (15c) and (15d ) are integrated from x = 1 to x = 0 with initial values
Fr(1) = F ′r(1) = 0, ψo(1) = 4. The values of F ′′r (1) and of Ra must be adjusted (by
shooting) to satisfy the conditions ψo(0) = 0 and Fr(0) = 0. This procedure results
in F ′′r (1) = 1.033 and Ra = Ramin = 28.92. The solid curve for Pr = 0 shows ψo

found numerically and the broken curve P represents the polynomial approximation,
10x2 − 6x3, for ψo in figure 4(b). The Pr = 0 and P curves are indeed very close.
Therefore, the multiplicative composite solution, ψa = ψoψi/ψi(∞), which provides a
uniform asymptotic approximation (Van Dyke 1964) for ψ as Re→∞, can be written
in the form

ψa = (10x2 − 6x3)Re(1− x)/[4 + Re(1− x)].

This formula describes the flow corresponding to the Pr = 0 curve in figure 4(a)
for large Re. To describe high-speed flows for Pr 6= 0, we need to consider the
temperature field as well.

6.4. Temperature distribution in the near-axis jet

Substituting η ≡ Re(1 − x) and ψ = ψi and allowing Re → ∞ for a fixed η, we
transform (9b) to the equation

2η dϑ/dη = −ψi(1 + Prϑ).

Its integration, after use of (15a) and (10b), yields the following inner solution for
ϑt ≡ 1 + Prϑ:

ϑti = 1
4
(1/Pr + 2)(1 + η/4)−2Pr. (16)

(Note that (16) coincides with the (large-Re) solution of Rumer 1952.) Since ϑti tends
to zero as η → ∞, the matching condition for the outer solution is ϑto(1) = 0; then
(9b) yields ϑto ≡ 0. Thus, the near-axis jet transports all heat from the point source
and, therefore, (16) is a uniform approximation for the temperature over the entire
flow region.

6.5. Relation among Re, Ra and Pr for high-speed jets

Using (16), we obtain the outer solution Fo for Pr 6= 0 which differs from the solution
Fo at Pr = 0 (§ 6.3) as discussed below. To find Fo, we need to consider the inner
solution Fi.

It is helpful to rewrite (11a) using (9b) as F ′′′ = Raϑ′ and then as Re2d3F/dη3 =
Ra dϑ/dη. Applying (16) for ϑ, integrating three times, and satisfying (11c, d) (in the
form Fi(0) = dFi/dη(0) = 0), we obtain the inner solution

Fi = [2(1 + η/4)2−2Pr − η(1− Pr)− 2]Re−2RafPr − C(1− x)2, (17a)

where C is an integration constant and

fPr = (1 + 2Pr)[Pr2(1− Pr)(1− 2Pr)]−1. (17b)

To match the inner (Fi) and outer (Fo) solutions, Fi must be bounded as Re → ∞,
and Fo(x) must have, near x = 1, the same character as Fi(η) for η � 1 (i.e. near the
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outer boundary of the jet). According to (17a), this character is different for Pr < 1/2
and for Pr > 1/2.

If Pr > 1/2, the second term dominates the other terms in the square brackets of
(17a) as η →∞. Then, neglecting the other terms and requiring (for Fi to be bounded)
that

Re−1Ra(1 + 2Pr)[Pr2(2Pr − 1)]−1 → C1 as Re→∞,
we obtain Fo(x) = C1(1− x)−C(1− x)2. Next, the condition Fo(0) = 0 yields C1 = C
and, therefore, Fo = Cx(1 − x). Note that at x = 1, F ′′o is regular for Pr > 1/2 in
contrast to the singular F ′′o at Pr = 0. To obtain the outer solution ψo(x), we substitute
F = Fo in (11b), as follows:

(1− x2)ψ′o + 2xψo − 1
2
ψ2

o = Cx(1− x).

Integrating and satisfying the conditions, ψo(0) = 0 and ψo(1) = 4, we find C = 15.29.
(This solution coincides with that found by Schneider 1981 for a jet emerging from a
hole in a no-slip plane.) Thus, we obtain the asymptote (e.g. for the Pr = 1 curve in
figure 4a),

Re = Ra(1 + 2Pr)[CPr2(2Pr − 1)]−1 for Re� 1 and Pr > 1/2.

If Pr < 1/2, the first term in the square brackets of (17a) dominates the other terms
as η →∞. Then, neglecting the other terms and requiring (for Fi to be bounded) that

24Pr−3fPrRe
−2PrRa→ C1 as Re→∞,

we obtain Fo(x) = C1(1 − x)2−2Pr − C(1 − x)2. Again, the condition Fo(0) = 0 yields
C1 = C and, therefore, Fo = C[(1− x)2−2Pr − (1− x)2]. (Note two important features:
(i) the Fo solutions for Pr > 1/2 and Pr < 1/2 coincide at Pr = 1/2, and (ii) for
0 < Pr < 1/2, F ′′o has a power-law singularity, F ′′o ∼ (1 − x)−2Pr as x → 1, while for
Pr = 0, F ′′o has a logarithmic singularity at x = 1.) To find the outer solution ψo we
apply Fo(x) to (11b):

(1− x2)ψ′o + 2xψo − 1
2
ψ2

o = C[(1− x)2−2Pr − (1− x)2]. (17c)

Integrating (17c) from x = 1 to x = 0 with the condition, ψo(1) = 4, and satisfying
the condition ψo(0) = 0, we determine C as a function of Pr. Therefore, we obtain
the asymptote (e.g. for the Pr = 0.3 curve in figure 4a),

Ra = Re2PrC(Pr)23−4Pr/fPr for Re� 1 and Pr < 1/2. (17d)

For Pr � 1 (the case relevant for high-speed jets), (17b) yields fPr = Pr−2, and the
asymptote for C(Pr) is Ca = (2Pr)−1. The latter relation follows from the requirement
that the F ′′o singularity at x = 1 transforms from a power-law to a logarithmic type
as Pr → 0, i.e. the right-hand side of (17c) must produce the term −(1− x)2 ln(1− x)
as Pr → 0 (see the expression for Fs in § 6.3).

Using fPr = Pr−2 and C = (2Pr)−1 we reduce (17d ) to

Ra = 4PrRe2Pr for Re� 1 and Pr � 1 (17e)

(e.g. for the Pr = 0.1 curve in figure 4a). Substituting Ra = RaF and Re = ReF in
(17e) yields the asymptote, ReF = ( 1

4
RaF/Pr)

1/(2Pr), for the fold points in figure 4(a)
as Pr → 0.

Thus, the buoyancy force generates a high-speed collimated jet for small Pr because
(i) negative ‘feedback’ of convection is weak and (ii) the entrainment effect causes
self-focusing of the outflow. In contrast, swirl imposed on the disk decreases the jet
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Figure 5. Convection above the swirling disk. Numbers near the curve indicate the values of the swirl
Reynolds number Res. Letters next to the numbers denote the equilibrium state (E), the swirl-free
convection (C), and the swirling ascending (A), descending (D), and reversed-near-the-axis (R) flows.
Insets show the flow patterns for ascending (Re∗ > 0), descending, and reversed-near-the-axis flows.
Pr = 0.1.

velocity. Since the centrifugal force is directed away from the axis of rotation, it
widens the near-axis jet by pushing the fluid toward the periphery. Moreover, swirl
can make this jet annular, and can even reverse the flow near the axis.

7. Effects of swirl on the jets
7.1. Breakdown of the transcritical bifurcation

To study swirl effects, we consider a potential-vortex flow imposed on the disk. In
this case,

vφ = ν(r sin θ)−1Γ (x), (18a)

where Γ is the velocity circulation along a circle {r = const, θ = const} divided by
2πν. With the help of (18a), (8) (except for vφ), and (2) we obtain the equation for Γ :

(1− x2)Γ ′′ = ψΓ ′. (18b)

The boundary conditions for Γ are

Γ (1) = 0 and Γ (0) = Res. (18c)

Here the swirl Reynolds number Res is the circulation on the disk divided by 2πν.
The integration of (18b) starts from x = 1 with Γ (1) = 0 and a guessed value of
Γ ′(1). Then we adjust Γ ′(1) by shooting to satisfy Γ (0) = Res. Finally, for swirling
flows, (11a) is modified to

(1− x2)F ′′′ = Raψ(1 + Prϑ) + 2ΓΓ ′. (18d)

Figure 5 shows the results for the swirling disk (with the symmetry condition for ψ)
at Pr = 0.1. Numbers near the curves indicate the Res values while the letters denote
the flow state: E the equilibrium state, C the swirl-free convection, A ascending, D
descending, and R reversed-near-the-axis swirling flows. Solid curves represent stable
flow states, and broken curves represent unstable solutions.
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Figure 6. Velocity profiles for the two-cell swirling flow at the fold point on curve 24R in figure 5.

The swirl destroys the transcritical bifurcation T : ascending (curve 1A) and de-
scending (curve 1D) modes are separated at Res = 1, unlike curves 0C and 0E at
Res = 0 in figure 5. The fold bifurcation F survives for Res 6= 0 and again allows
the appearance of bipolar jets through a fold catastrophe as Ra increases. For the
stable outflows (solid branches for Re > 0), the maximum velocity (Re) is smaller for
swirling flows than that for swirl-free convection at the same Ra.

7.2. Development of conical jets

As Res increases, the fold point F (separating the stable and unstable solution
branches) moves to the right and downward and eventually crosses the line Re = 0
(curves 10, 18, and 24 in figure 5). The crossing corresponds to the flow reversal near
the axis. First, such a reversal occurs for the unstable lower branch (curve 18 for
Re < 0), and then for the stable upper branch as well (curve 24R). Curve 24 comprises
the branches 24A (ascending flow) and 24R (reversed-near-the axis flow, see the inset
near curve 24R).

Figure 6 shows profiles of the radial (vr) and azimuthal (vφ) velocities (both
normalized by the maximum of vr) at the fold point of curve 24R in figure 5. There
are two inflow (vr < 0) regions in figure 6: θ < 10◦ and θ > 35◦, and an annular
conical outflow (vr > 0) in between. Our calculations show that flow reversal near
the axis occurs when the ratio of the maximum swirl velocity to the maximum radial
velocity exceeds 0.7 (a value typical of vortex breakdown, e.g. see Shtern & Hussain
2000).

7.3. High-speed swirling jet

Even for large Res, the jet remains consolidated as long as buoyancy (which pushes
the flow along the axis) dominates the centrifugal effect (which pushes the jet away
from the axis), e.g. see curve 24A in figure 5 for large Re. To describe these weakly
swirling high-speed jets, the asymptotic analysis of § 6 must be generalized to include
the swirl.

For large Re, the solution for circulation Γ has two parts: for a near-axis boundary
layer and for an inviscid outer flow. In the outer flow, the linear (viscous) term
on the left-hand side of (18b) is negligible, and therefore Γ ′ = 0, i.e. circulation is
constant: Γ ≡ Res for 0 6 x < 1. Within the boundary layer, the circulation drops
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to zero on the axis. Using the inner variable η = Re(1 − x) and (15a), we reduce
(18b) to d2Γ/dη2 = 2(4 + η)−1 dΓ/dη. Integrating and using the conditions Γ = 0 at
η = 0 and Γ → Res as η → ∞, yields Γ = Resη/(4 + η). This solution is a uniform
approximation for Γ over the entire flow region as well.

Now, we consider how the swirl modifies the ascending meridional flow. We show
(below) that the outer solution ψo increases with Ra in swirling convection (unlike
the constraint that ψo < 4 in the swirl-free case, figure 4b). Then for large Ra, the
linear terms on the left-hand side of (11b) become negligible, yielding ψo = (−2Fo)1/2.
Substituting F = Fo = −2Ra2W and ψ = ψo = 2RaW 1/2 in (18d ), putting Pr = 0
and Γ ′ = 0, and using the conditions ψo(0) = ψo(1) = 0, we obtain

(1− x2)W ′′′ = −W 1/2, W (0) = W ′(0) = W (1) = 0. (19)

In addition to W ≡ 0, the problem (19) has a non-trivial solution where W ′′(0) =
0.00478 (giving the radial velocity on the disk, vr(0) = −Ra[2W ′′(0)]1/2νr−1) and
W ′(1) = −0.00606 (used below).

The outer solution, ψo = 2RaW 1/2, resulting from (19) does not match the inner
solution ψi: ψo(1) = 0 where ψi = 4 as η → ∞ according to (15a). Therefore, an
intermediate boundary layer exists between the near-axis jet and the outer flow. The
solution ψio for this intermediate boundary layer must satisfy the equation

ξdψiodξ = ψio − ψ2
io/4 + 2ξ, ξ = (1− x)Re2

s /8. (20a)

We have deduced (20a) from (11b) using F = −(1−x)Re2
s /2. (This approximation for

F near the axis follows from the solution by Long 1961 for swirling jets.) Matching
ψio and ψi yields the condition ψio = 4 at ξ = 0. Since ψio → Res(1− x)1/2 as ξ → ∞
and ψo = 2Ra|W (1)|1/2(1 − x)1/2 + O(1 − x) near x = 1, matching ψio and ψo yields
the asymptotic relation

Res = 2|W ′(1)|1/2Ra. (20b)

This relation, when applied to obtain the value of Ra at the collapse point as
a function of Res, agrees well with the numerical results for large Res. Thus, (20b)
explains the shift of the curves in figure 5 to the right as Res increases. Note that the
large-Re slopes of these curves, being determined by (17e), do not depend on Res.
Using (20b) and (17e), we can estimate the angular thickness of both the boundary
layers in terms of Ra : θi ∼ O(Ra−1/(4Pr)) for ψi and θio ∼ O(Ra−1) for ψio (figure 7).
As θ increases in the tail region, θi < θ < θio, the jet velocity decreases slower, vr ∼ θ−1

(the dashed curve in figure 7), than the Schlichting jet (vr ∼ θ−4, the solid curve). The
Schlichting jet (15a) approximates the solution in the core region 0 < θ < θi well.
Such a core–tail structure is typical of weakly swirling jets (Shtern & Hussain 2000).

Now we show that the ascending convection with high-speed jets is stable.

8. Stability of conical buoyancy-driven flows
8.1. Problem of spatial linear stability

First, we study the spatial linear stability of the convection flows and then the weakly
unsteady and weakly nonlinear dynamics of disturbances that result in switching
between the steady states (e.g. see arrows FE and TC in figure 3). For conical
convection (considered here as the base flow), u ≡ rv and ϑ ≡ r(T − T∞)/(γP r)
depend only on θ. Therefore, the equations for infinitesimal steady disturbances of u
and ϑ allow normal-mode (exponential) solutions with respect to ln r and φ, e.g.

ϑ = ϑb(θ) + Aϑd(θ)rα cos(mφ). (21)
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θio

θi

Figure 7. Schematic (not to scale) of vr(θ) (radial arrows) at fixed r for large-Re swirling flows
in figure 5. The near-axis jet has the Schlichting-jet core, θ < θi ∼ Ra−1/(4Pr), and the tail,
θi < θ < θio ∼ Ra−1, where vr decays slower (dashed line) than in the Schlichting jet (solid line).

The indices b and d denote the base state and the disturbance, the amplitude A
is some constant, and m is some prescribed integer (the azimuthal wavenumber).
The velocity and pressure disturbances have similar representations. The exponent α
is the unknown eigenvalue. Thus, the stability problem exactly reduces to ordinary
differential equations (e.g. for ϑd) despite the strongly non-parallel nature of the base
flow (figure 2b). We omit here the details of this reduction and present only the
results since the algebra is cumbersome but straightforward and quite similar to that
for swirl-free (Shtern & Hussain 1998) and swirling (Shtern & Drazin 2000) conical
flows. The new elements are the temperature equation and the buoyancy-force term
in the radial momentum equation; both these elements can be included without any
difficulty.

The exponent α characterizes the spatial stability. Since a point–source solution is
a far-field approximation, we consider the behaviour of the disturbance as r → ∞.
If α < 0, the disturbance decays faster than the base flow; if α = 0, the disturbances
and base flow have the same r-dependence; and if α > 0, the ratio of the disturbance
to the base flow amplitude increases with r. Accordingly, α < 0, α = 0, and α > 0
correspond to stability, neutral stability, and instability of the base flow.

8.2. Instability causing hysteretic transitions

Figure 8 shows the results for the problem with the stress-free condition on the disk
at Pr = 1 and Res = 0. The curve ACFTD and the Re = 0 line represent the base flow
and the rest state (as in figure 3a). Curves αE and αC show the scaled spatial stability
growth rate (10× α); α is a real number in this case. Subscripts E and C indicate the
equilibrium (rest) state and convection. Curve αE represents the analytical solution
(4) at l = 2 and shows that the rest state is stable, αE < 0, for Ra < 24 and unstable,
αE > 0, for Ra > 24.

Curve αC depicts the numerical results for the stability of the convective flow
(ACFTD) with respect to axisymmetric (m = 0) disturbances. In the vicinity of the
bifurcation point T , αE has the opposite sign to that of αC , i.e. the principle of
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Figure 8. Spatial stability growth rate (10 × α) for the equilibrium state (curve αE) and for
convection (curve αC ) vs. Rayleigh number Ra. Curve ACFTD shows Re(Ra) for the basic flow near
the swirl-free symmetry disk at Pr = 1 (as in figure 3a). The lower branch αC corresponds to stable
convection (branch ACF ).

exchange of stabilities is valid: the flow is stable when the rest state is unstable and
vice versa.

The most interesting result is that the flow becomes stable for the solution branch
FCA in figure 8. When one moves away from T along curve TF , curve αC shows
that α first increases, reaches its maximum value of α = 0.0154 at Ra = 23.56, then
decreases, and crosses zero at the fold point F . The fact that α changes its sign exactly
at F serves as a check for the numerical calculations. The lower branch of curve αC
corresponds to the upper branch FCA. Since α < 0 on the lower branch of curve αC ,
the flow is stable along FCA.

Similar changes in stability at fold point-occur in the flow with the no-slip (as
well as the swirling) disk. In the no-slip case, there is no three-dimensional instability
of the descending flow near the bifurcation point T (figure 3b). In the next section,
we develop the weakly nonlinear approach for the hysteretic transitions between the
states.

8.3. Amplitude equations for spatiotemporal disturbances

To investigate the spatiotemporal nonlinear dynamics of transient trajectories, we
deduce amplitude equations of the Ginzburg–Landau type with the help of the
expansion

ϑ = ϑb0 + εϑb1 + εA(ετ, ξ)ϑd1(x) + ε2A2(ετ, ξ)ϑd2(x) + · · · (22)

(and similar expansions for the velocity and the pressure). Here ε ≡ Ra− RaF is the
small parameter and amplitude A is of O(1) in the vicinity of the fold point F . Indices
b and d denote the base flow and the disturbance respectively; subscripts 0, 1 and
2 correspond to the powers of ε; τ = νt/r2

0 and ξ = ln(r/r0) where r0 is an arbitrary
value of r within the region of conical similarity.

Expansion (22) involves only axisymmetric (m = 0) disturbances because we con-
sider the transition between the axisymmetric flow states. Upon substitution of (22) in
(2), the resulting terms of O(1) constitute the equations for the base flow at Ra = RaF ,
and terms of O(ε) constitute the linear stability equations and also describe the vari-
ation of the basic flow as Ra changes (ϑb1). The solvability condition for terms of
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Figure 9. Weakly nonlinear approximation (broken curve) for steady swirl-free convection
(solid curve) and transient trajectories (arrows) described by the amplitude equation (24). Pr = 1.

O(ε2) results in the amplitude equation

As = exp(−2ξ)[γA− δA2 + (Aξξ − βAξ)/ε], (23)

where s = ετ is the ‘slow’ time, and the subscripts denote differentiation. Values of
the coefficients β, γ and δ follow from the expansion. We omit the detailed derivation
of (23) because it is similar to that in Shtern & Hussain (1998) and Shtern & Drazin
(2000). Moreover, (23) coincides with the amplitude equation obtained in Shtern &
Hussain (1998) for a fold point in conical solutions of the Navier–Stokes equations.

All terms in (23) are of O(1) since Aξ and Aξξ are both of O(ε). For a finite region
ξi 6 ξ 6 ξo we use the boundary conditions Aξ(ξi) = Aξ(ξo) = 0 which are consistent
with the conical similarity of the base flow. There are two steady ξ-independent
solutions of (23): A = 0, corresponding to the unstable branch FT in figure 3(a), and
A = γ/δ, corresponding to the branch FC . Equation (23) governs the transition from
the unstable to stable branches at Ra = RaF + ε (e.g. from U to SC in figure 9) and
also the evolution of the disturbance shown by the upper arrow in figure 9. Equation
(23) does not describe the transition from U to SE in figure 9. Along line USE, |A|
becomes infinite at a finite time according to (23) – a limitation typical of a weakly
nonlinear approach.

To overcome this drawback and to involve all three steady ξ-independent solutions
in the range RaF < Ra < Racr , (e.g. the stable convection, SC , the unstable convection,
U, and the stable rest state, SE , in figure 9), we modify (23) by adding a term
proportional to A3. Also, we change the reference value and the normalization to
make A = 0 at the rest state and A = Re for the steady-flows. Then (23) transforms
into the equation

As = exp(−2ξ){γA[σ − (A− ReF )2] + (Aξξ − βAξ)/ε}, (24)

where σ = Re2
F (Ra−RaF )/Racr −RaF ) (we recall that subscript F indicates values at

the fold F). The broken curve in figure 9, depicting (Re− ReF )2 = σ, passes through
F and T , approximates the unstable branch FUT well, and approximates the stable
branch FSC satisfactorily. In (24), β and γ(σ − Re2

F ) are spatial and temporal growth
rates of the infinitesimal disturbances of the rest state. Since this state is linearly
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stable for Ra < Racr , β < 0 and γ(σ−Re2
af ) < 0 in this range. Equation (24) describes

transient trajectories (arrows in figure 9) near the stable (e.g. SE and SC) and unstable
(e.g. U) steady states, and therefore hysteretic transitions between the rest state and
ascending convection (figure 3a). Equation (24) governs hysteretic transitions for the
no-slip disk as well (figure 3b). Thus, the strong jets corresponding to ascending
convection (e.g. the upper branches in figures 3 and 5) are stable near the fold points
(at least).

9. Concluding remarks
The primary objective of this paper is to demonstrate that buoyancy can generate

strongly collimated bipolar jets evolving from the spherically symmetric rest state
near a point source of heat and gravity. To this end, we have considered a simple
problem described by conically similar solutions of the Boussinesq equations. The
problem symmetry permits detailed parametric, asymptotic, stability, and bifurcation
analyses, and even analytical solutions, which reveal a number of interesting effects:
convection onset via instability and bifurcation, jet collimation, flow reversal near the
axis (due to swirl imposed on the accretion disk), and hysteretic transitions between
the steady states.

An important element of our approach is the modelling of the accretion disk as an
infinite impermeable equatorial plane. This causes flow symmetry with respect to the
disk, and in particular, the bipolar character of jets. We have considered (a) no-stress,
(b) no-slip, and (c) potential-swirl conditions on the disk. The no-slip condition does
not affect the flow outside the near-disk boundary layer for high-speed jets (Re� 1)
but affects the stability and bifurcation features of low-speed convection. On the other
hand, the symmetry condition (due to its inviscid nature) remains important over the
entire flow domain and affects both low-speed and high-speed convection.

The simplicity of the model allows us to analytically solve the problem of the rest-
state instability (§ 3) and to obtain analytical solutions for the nonlinear problem of
bifurcation of thermal convection (§ 4). As Ra exceeds its critical value Racr , two stable
states of steady convection appear for the no-slip disk (figure 3b): (i) the ascending
flow (A) which consists of an outflow normal to the disk and a radial inflow along the
disk, and (ii) the descending flow (D) which has the opposite direction to that of A.

The velocity of flow D gradually increases from zero as Ra increases beyond Racr .
In contrast, stable flow A can only exist at high speeds; its maximum velocity (Re) is
substantially larger than that for D (at the same values of Ra and r). As Ra increases,
flow A develops via saturation of finite-amplitude disturbances (of the rest state or of
flow D) and disappears via a fold catastrophe as decreasing Ra reaches RaF < Racr
(e.g. at F in figure 3). Thus, the model predicts that the bipolar outflows appear and
disappear via hysteretic transitions (§ 5).

The high-speed character of flow A becomes more prominent as the Prandtl
number Pr decreases, since the negative ‘feedback’ (advection-induced change in the
temperature field) weakens. Indeed, the velocity on the axis (Re) tends to infinity for
finite Ra as Pr → 0 (figure 4a); accordingly, the angular width of the outflow tends to
zero. Hence buoyancy-generated high-speed collimated jets arise. We have developed
an asymptotic approach for Re� 1 and have obtained analytical solutions describing
the near-axis jet and the entrained flow (§ 6).

We have extended the problem to the case of a potential-vortex motion of the
disk material (to mimic cosmic flows). The swirl destroys the transcritical bifurcation
T (figure 5), and thus separates the solution branches corresponding to ascending
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(A) and descending (D) convection. However, the swirl retains the fold bifurcation
(at Ra = RaF ), allowing hysteretic appearance and disappearance of high-speed jets
(figure 5). As the disk circulation (Res) becomes large, it gives rise to new important
effects (§ 7): (i) RaF increases proportionally to Res, (ii) the near-axis jet transforms
into a conical annular jet, and (iii) flow reversal occurs near the axis (figure 6).

Such a detailed parametric study is possible due to the similarity that allows
us to reduce the Boussinesq equations to ordinary differential equations. The simi-
larity also allows us to develop an efficient stability analysis technique for these
strongly non-parallel flows (§ 8), and to study (i) the linear instabilities with respect
to time-independent disturbances leading to hysteretic transitions (figure 8), and (ii)
the spatiotemporal nonlinear dynamics of the disturbances near the steady states
(equation (24) and figure 9).

This technically simple problem has a number of features analogous to those of
geophysical and astrophysical flows. The point-source model is the limiting case for
thermal convection between spherical shells. Shell convection has been extensively
studied for modelling large-scale circulation in planets and stars (Chandrasekhar 1981;
Busse 1975), and for the mathematical aspects related to bifurcation in spherically
symmetric systems (Chossat 1979; Golubitsky & Schaeffer 1982). In the limiting
case of a narrow shell, the problem reduces to a horizontal layer heated from
below, for which Rayleigh (1916) obtained the first analytical solution of convection.
Surprisingly, the other limiting case where the outer to inner radius ratio tends to
infinity (and gravity is due to the mass of the inner sphere only) has not so far
been studied. As in the Rayleigh problem, the point-source limiting case also permits
analytical solutions obtained here.

Interestingly, buoyancy jets have some similarity with astrophysical outflows. These
outflows emerge from young stars, double stars, dying stars, and galaxy cores (whose
masses range from 0.01 to 109 of the mass of the Sun), have sizes of 0.1–106 parsecs
(1 parsec ≈ 3×1013 km), and have velocities ranging from tens of km s−1 to relativistic
ones (Bachiller 1996; Ferrari 1998; Pudritz 2000). The fact that the appearance of jets
seems to be a generic phenomenon – occurring in such a variety of objects and scales –
motivated us to investigate whether a simple fluid-mechanics model can demonstrate
the development of strongly collimated outflows.

Our model differs from the very complex astrophysical jets in many aspects:
(a) the density gradients are due to the temperature gradients in our case, but
not so in cosmic jets; (b) rotation is potential here, while it is Keplerian in cosmic
accretion disks; (c) the Boussinesq approximation we use is not valid for astrophysical
applications; (d ) velocity and temperature fields are conically similar in our problem,
but they are not so in cosmic jets; (e) the thermal energy of stars and galaxy cores
is transported by radiation, and not via diffusion as modelled here; and (f) our
study is limited to incompressible flows while cosmic jets are hypersonic and even
relativistic.

Nevertheless, the model has a few important features in common with cosmic
outflows: gravity and density gradients, and an accretion disk. Our study has shown
that these features alone are sufficient for the formation of collimated bipolar jets.
Other common features – the concentration of magnetic field and the formation of
spiral branches – will be reported separately.
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