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Effect of deceleration on jet instability
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A non-parallel analysis of time-oscillatory instability of conical jets reveals important
features not found in prior studies. Flow deceleration significantly enhances the shear-
layer instability for both swirl-free and swirling jets. In swirl-free jets, flow deceleration
causes the axisymmetric instability (absent in the parallel approximation). The critical
Reynolds number Rea for this instability is an order of magnitude smaller than
the critical Rea predicted before for the helical instability (where Rea = rva/ν, r

is the distance from the jet source, va is the jet maximum velocity at a given r ,
and ν is the viscosity). Swirl, intensifying the divergence of streamlines, induces an
additional, divergent instability (which occurs even in shear-free flows). For the swirl
Reynolds number Res (circulation to viscosity ratio) exceeding 3, the critical Rea for
the single-helix counter-rotating mode becomes smaller than those for axisymmetric
and multi-helix modes. Since the critical Res is less than 10 for the near-axis jets,
the boundary-layer approximation (used before) is invalid, as is Long’s Type II
boundary-layer solution (whose stability has been extensively studied). Thus, the non-
parallel character of jets strongly affects their stability. Our results, obtained in a
far-field approximation allowing reduction of the linear stability problem to ordinary
differential equations, are more valid for short wavelengths.

1. Introduction
This paper addresses time-oscillatory instability of strongly non-parallel flows

governed by conical similarity solutions of the Navier–Stokes equations. Conical
flows include swirl-free round jets (Schlichting 1933; Landau 1944; Squire 1952),
swirling jets (Long 1961), and many other flows (e.g. see Shtern & Hussain 1998,
referred to herein as SH98). Prior stability studies of these flows used quasi-parallel
and boundary-layer approximations. We show here that critical Reynolds numbers
are an order of magnitude smaller than those estimated using quasi-parallel and
boundary-layer approximations; both these approximations thus appear invalid.

The steady-state non-parallel analysis (SH98) explained the divergent instability
(Goldshtik, Hussain & Shtern 1991), swirl generation (Shtern & Barrero 1995), and
hysteretic transitions (Shtern & Hussain 1996), but this analysis did not address
the time-oscillatory disturbances which typically are the most dangerous for the
swirl-free and swirling jets. To overcome this limitation, we extend here the SH98
approach to generic disturbances by using a far-field approximation. Such approaches
are reasonable for stability studies of conical flows which are themselves far-field
approximations of practical jets.

Separation of variables applied asymptotically far downstream (i.e. a far-field
approximation) seems to have been introduced by Libby & Fox (1963) who studied
the spatial stability of the Blasius boundary layer. Govindarajan & Narasimha (1995)
used similarity variables for the stability study of the Falkner–Skan flows and thus
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took into account weakly nonparallel effects. Tam (1996) applied a similar idea for
the spatio-temporal development of disturbances in the plane jet. McAlpine & Drazin
(1998) used the asymptotic separation of variables for spatial stability studies of the
Jeffery–Hamel flow in a planar diffuser.

We apply this asymptotic approach to axisymmetric conical flows. The approach
is limited to disturbances of wavelengths that are small compared with the distance
from the jet origin (this limitation, however, is even more severe in the parallel-flow
approximation). An important advantage of the approach is that it involves neither
the quasi-parallel nor the boundary-layer approximations of the base flow, while prior
stability studies of swirl-free and swirling jets (discussed below) applied one or both
of these approximations.

Batchelor & Gill (1962) studied the stability of swirl-free round jets by considering a
top-hat velocity profile close to the nozzle and the Schlichting (1933) solution far from
the nozzle. Their inviscid parallel-flow theory revealed no axisymmetric instability of
the Schlichting jet and found that only the m = ±1 helical disturbances can grow; m

is the azimuthal wavenumber. Further inviscid and viscous analyses by Kambe (1969),
Mollendorf & Gebhart (1973), Lessen & Singh (1973), and Morris (1976) also failed
to find growing axisymmetric modes. In contrast, we show here that the axisymmetric
(m = 0) instability does indeed occur and at rather small Reynolds number Rea . The
m = ±1 disturbances also grow, but at larger Rea than for the m = 0 mode. The
critical Rea for the m = ±1 instability estimated using quasi-parallel approximations
is nearly twice the value we find by the non-parallel approach.

Stability of swirling jets also has been studied extensively using parallel-flow
approximations. One motivation is to explain the vortex breakdown phenomenon.
Cores of leading-edge and trailing aircraft vortices, of flows in vortex devices, and
of tornadoes (all these cores are swirling jets) can abruptly expand into bubble-
like recirculatory zones or into helical or multi-helix patterns–examples of vortex
breakdown. The vortex-breakdown mechanism remains an open question despite
much work since its discovery (see § 4.2 for a more detailed discussion); one view is
that vortex breakdown appears via instability. The fact that tornadoes and delta-wing
vortices can be modelled as conical swirling jets has stimulated stability studies of
Long’s (1961) solution.

Using a boundary-layer approximation for the core of a near-axis swirling flow,
Long (1961) found two solution branches (I and II) when the scaled flow force M >

Mf = 3.74 and no solution for M < Mf (solutions I and II are schematically shown
by branches aI and aII respectively in figure 1a). Using a parallel-flow approximation,
Foster & Duck (1982) studied the inviscid stability of solutions I and II near the
fold (point F separating aI and aII in figure 1a); i.e. for M close to Mf . Foster &
Smith (1989), for solution II, and Ardalan, Draper & Foster (1995), for solution I,
extended the stability study for large M . They found that both solutions I and II
are unstable to helical disturbances. Foster & Jacqmin (1992) evaluated weakly
nonparallel effects on the inviscid stability characteristics. Khorrami & Trivedi (1994)
corrected some results of Foster & Duck (1982) and studied weakly viscous effects on
flow stability. Using a similar technique, Fernandez-Feria (1996) found the instability
of solution II to axisymmetric disturbances. Next, Fernandez-Feria (1999) studied
weakly non-parallel spatial instability and found growing disturbances propagating
upstream (for solution II).

Whereas these studies of Long’s vortex were made in the boundary-layer approxi-
mation, Drazin, Banks & Zaturska (1995) formulated the spatial stability problem
using the full Navier–Stokes equations. Shtern & Hussain (1996) addressed swirling
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Figure 1. (a) Schematic illustrating the disappearance of Long’s solution II. Curves a, b and
c show the dependence of axial velocity Rea on flow force M at circulation Res > Rescu,
Res = Rescu, and Res < Rescu, respectively. Rescu is the value of Res at cusp cu (see inset).
Curve a consists of branches aI, aII and aIII; aII depicts Long’s solution II. As decreasing
Res passes Rescu, aII degenerates into a point (star symbol on curve b) and then disappears.
(b) Diagram of a base swirling flow outside a cone with coordinates {r, θ, φ}.

flows outside a cone or a half-line vortex. They showed that there are three solutions
forming a hysteresis loop (branches aI, aII and aIII in figure 1a), with Long’s
solution II representing the intermediate branch. This hysteresis occurs only when
swirl Reynolds number Res (circulation to viscosity ratio) is large. As Res decreases
below a cusp value Rescu, the solution becomes fold-free (curve b for Res = Rescu and
curve c for Res < Rescu in figure 1(a); the inset shows the arrangement of solutions
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a, b and c with respect to the cusp, cu); i.e. the hysteresis, hence Long’s solution II,
disappears. Shtern & Drazin (2000) studied the spatial stability of the flow induced by
a half-line vortex to time-monotonic disturbances. They showed that Long’s solution
II is unstable to axisymmetric disturbances for Res > Rescu = 11.5, i.e. for all Res

where this solution exists. They also found that Long’s solution I is unstable to the
m = ±2 modes when Res exceeds a critical value dependent on M .

Here, we extend this analysis to time-oscillating disturbances (using the full Navier–
Stokes equations). We will show that both the axisymmetric and the m = −1 helical
instabilities occur for Res < Rescu. For such small Res , the flow has a unique steady
state (i.e. Long’s solution II does not exist) and the boundary-layer approach is
invalid. That is, flow non-parallelism strongly affects the instability of both swirling
and swirl-free jets.

Following the problem formulation in § 2, we study stability of swirl-free (§ 3) and
swirling (§ 4) jets and discuss the physical mechanisms of their instabilities (§ 5).

2. Formulation of the stability problem
2.1. Transformation of governing equations

The stability theory of parallel flows exploits the fact that a base flow depends on only
one coordinate (Drazin & Reid 1981). This permits the normal mode representation
of disturbances with respect to other coordinates and time, and thus reduction of the
linear stability problem to a system of ordinary differential equations. Axisymmetric
conical flows have a feature similar to that of parallel flows: the product, rv, depends
only on θ; v is the velocity vector, {r, θ, φ} are spherical coordinates, r is the distance
from the origin, θ is the polar angle, and φ is the azimuthal angle about the axis
of symmetry z (figure 1b). Exploiting this feature, we pursue stability by introducing
new dependent variables,

u(x, φ, ξ, τ ) = vrr/ν, v(x, φ, ξ, τ ) = vθr sin θ/ν, Γ (x, φ, ξ, τ ) = vφr sin θ/ν,

p(x, φ, ξ, τ ) = (P − P∞)r2/(ρν2),

}
(1)

where dimensionless functions u, v, Γ , and p correspond to the velocity components
{vr, vθ , vφ} and the pressure P, respectively; P∞ is a constant corresponding to a
given pressure at r → ∞, ρ is the (constant) density, and ν is the kinematic viscosity.
New independent variables are

ξ = ln(r/r0), x = cos θ, τ = νt/r2, (2)

where a length scale r0 makes the argument of the logarithm dimensionless. The
azimuthal angle φ is not transformed.

Substitution of (1) and (2) into the Navier–Stokes equations in spherical coordinates
(e.g. see Landau & Lifshitz 1987) yields the system,

u + uξ − vx + Γφ/(1 − x2) = 2τuτ , (3a)

uτ + uuξ − u2 − vux + (Γ uφ − v2 − Γ 2)/(1 − x2)

= 2p − pξ + uξξ + uξ + (1 − x2)uxx − 2xux + uφφ/(1 − x2)

− 2τ [(1 − u)uτ + 2uξτ − pτ ] + 4τ 2uττ , (3b)
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Γτ + uΓξ − vΓx + Γ Γφ/(1 − x2)

= −pφ + Γξξ − Γξ + (1 − x2)Γxx + (2xvφ + Γφφ)/(1 − x2)

− 2τ [2Γξτ − (1 + u)Γτ ] + 4τ 2Γττ , (3c)

vτ + uvξ − vuξ − vu + [Γ vφ − vΓφ − x(v2 + Γ 2)]/(1 − x2)

= (1 − x2)px + vξξ − vξ − (1 − x2)(ux − uxξ ) + Γxφ + vφφ/(1 − x2)

− 2τ [(1 − x2)uxτ − (1 + u)vτ + vuτ + 2vξτ ] + 4τ 2yττ , (3d)

where the subscripts denote differentiation with respect to the corresponding variables.
The advantage of (3) is that the coefficients of its steady form (with ∂/∂τ = 0)

depend on only one independent variable, x = cos θ , as distinct from the coefficients
of the Navier–Stokes equations in spherical coordinates, which depend on two
coordinates, r and θ . Unfortunately, system (3) involves terms proportional to τ

and τ 2 (these terms appears because r∂/∂r = ∂/∂ξ −2τ∂/∂τ ) and, therefore, does not
permit the normal-mode representation with respect to τ for infinitesimal disturbances.

We overcome this difficulty by using a far-field approximation. Consider time-
periodic solutions of period T , and let 0 � t � T . Then, 0 � τ � νT /r2 and,
therefore, τ → 0 as r → ∞. Thus, terms in (3) proportional to τ and τ 2 become
negligible in the far-field approximation, and (3) reduces to:

u + uξ − vx + Γφ/(1 − x2) = 0, (4a)

uτ + uuξ − u2 − vux + (Γ uφ − v2 − Γ 2)/(1 − x2)

= 2p − pξ + uξξ + uξ + (1 − x2)uxx − 2xux + uφφ/(1 − x2), (4b)

Γτ + uΓξ − vΓx + Γ Γφ/(1 − x2)

= −pφ + Γξξ − Γξ + (1 − x2)Γxx + (2xvφ + Γφφ)/(1 − x2), (4c)

vτ + uvξ − vuξ − vu + [Γ vφ − vΓφ − x(v2 + Γ 2)]/(1 − x2)

= (1 − x2)px + vξξ − vξ − (1 − x2)(ux − uxξ ) + Γxφ + vφφ/(1 − x2), (4d)

where the coefficients depend on x only. Since u, v, Γ and p for a base conical flow
also depend on x only, we can apply the normal-mode representation with respect to
all independent variables ξ, φ and τ (except x) and thus reduce the linear stability
problem to a system of ordinary differential equations.

The base flow, a conical similarity solution of the Navier–Stokes equations, can serve
as an asymptotic approximation (as r → ∞) for a practical flow, e.g. the Schlichting
(1933) solution describes a round jet at large distances from the nozzle. Noting that
conical flows are far-field approximations, we use the far-field approximation for their
disturbances as well.

2.2. Equations for infinitesimal disturbances

A normal mode for infinitesimal perturbations of a base flow can be as follows,

u = ub(x) + ud(x)E + c.c., v = vb(x) + vd(x)E + c.c.,

q = qb(x) + qd(x)E + c.c., Γ = Γb(x) + iΓd(x)E + c.c.,

}
(5)

where E = exp(αξ + imφ − iωτ ), c.c. denotes the complex conjugate of the preceding
complex term, complex α = αr + iαi where αr is the growth of the spatial mode
with the radial distance and αi is a radial wavenumber, m is an (integral) azimuthal
wavenumber, ω is the dimensionless frequency, and b and d indicate base flow and
disturbance, respectively.
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To compare (5) with the parallel-flow representation for normal modes, it is helpful
to substitute, r = r0 + s, where r0 is some reference distance from the jet origin
and s is limited to the radial wavelength L (s < L). Assuming that L/r0 � 1 and
expanding each of ξ and τ in power series with respect to s/r0, we find from (2)
that ξ = [1 + O(s/r0)]s/r0 and τ = [1 + O(s/r0)]νt/r2

0 . Thus, for s/r0 � 1, ξ and
τ are the dimensionless local coordinate and time, respectively, similar to those used
in the quasi-parallel stability studies. For long waves (L/r0 � 1), this interpretation
and the far-field approximation are both invalid, but the parallel-flow approach
is even worse because it ignores the base-flow divergence. We conclude that the
far-field approximation is valid at least where the parallel approach is valid and,
additionally, accounts for the base-flow deceleration. Based on this and the above-
mentioned expansions, we interpret ω and α as dimensionless frequency and the radial
wavenumber (as in the quasi-parallel stability theories).

The real part αr of exponent α characterizes the spatial stability. As r increases, if
αr < 0, the disturbance decays faster than the base flow; if αr = 0, the disturbance
amplitude and the base flow have the same r-dependence (their velocities decay as
r−1); and if (αr > 0, the ratio of disturbance to the base flow amplitude increases with
r . Hence, αr < 0, αr = 0 and αr > 0 correspond to spatial stability, neutral stability
and instability of the base flow, respectively.

Substitution of (5) and simple calculations reduce the linearized version of (4) to
the following system of ordinary differential equations:

v′
d = (1 + α)ud − mΓd/(1 − x2), (6a)

(1 − x2)u′′
d = (2x − vb)u

′
d + [(α − 2)ub + p1 − α − α2 − iω]ud

− u′
bvd + (α − 2)pd − p4, (6b)

(1 − x2)Γ ′′
d = (αub + p5)Γd − vbΓ

′
d + (iΓb − p2)vd − 2mud + mpd, (6c)

(1 − x2)p′
d = (1 − x2)(1 − α)u′

d + [p5 − (1 − α)ub]vd

− (1 + α)vbud − xp4 + mΓ ′
d + p3Γd, (6d)

where

p1 = (imΓb + m2)/(1 − x2), p2 = 2mx/(1 − x2), p3 = mvb/(1 − x2),

p4 = 2(vbvd + iΓbΓd)/(1 − x2), p5 = α − α2 + p1 − iω,

and the prime denotes differentiation with respect to x(= cos θ). We have reordered
(4) to a form convenient for numerical integration by putting the terms with the
highest derivatives on the left-hand side and all other terms on the right-hand side of
(6).

2.3. Boundary conditions

We consider a flow outside a cone, x < xc , with the cone tip located at the coordinate
origin and the cone axis aligned with the axis of symmetry, z (figure 1b) . Therefore,
the flow region is xc � x � 1, xc � −1. When xc = −1, the flow occupies the entire
space. Since system (6) is of the sixth order, we need six boundary conditions: three
of them must be satisfied at x = 1 and the other three at x = xc. These conditions
are listed below.

The axis of symmetry corresponds to the singularity points, x = ±1, for (6). If
the problem formulation prescribes no singularity on the axis, the solution must be
regular there. This leads to the conditions on the positive z-axis, x = 1:

vd = Γd = 0. (7a)
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Next, (6b) yields, at x = 1,

ud = 0 for m �= 0,

fd ≡ 2xu′
d + [(α − 2)ub − α − α2 − iω]ud + (α − 2)pd = 0 for m = 0.

}
(7b)

If xc = −1, and there is no singularity at x = −1 (e.g. in the case of a swirl-free
jet from a point source of momentum, see Landau & Lifshitz 1987), conditions (7a)
and (7b) must be satisfied at x = −1 as well. In the case of a half-line vortex, where
Γb �= 0 and ub has a logarithmic singularity at x = −1 (e.g. see Shtern & Drazin
2000), disturbances must satisfy the conditions,

vd(−1) = Γd(−1) = ud(−1) = 0. (7c)

At x = xc �= −1, disturbances satisfy either no-slip or stress-free conditions. The
no-slip condition on the cone surface yields

vd = Γd = ud = 0 at x = xc. (7d)

The impermeability and stress-free conditions yield (SH98)

vd = u′
d = (1 − x2)Γ ′

d + 2xΓd = 0 at x = xc. (7e)

In the case of the Landau jet or the Squire jet, the flow force is given. As the flow is
disturbed, disturbances must satisfy the condition that they provide no additional flow
force. For steady axisymmetric disturbances, this would require an additional integral
condition. However, for disturbances studied here, those are periodic with respect to
t and/or with respect to φ, this integral requirement is automatically satisfied.

2.4. Eigenvalue problem

The conditions for disturbances, e.g. (7a)–(7c), and equations (6) form a mathemat-
ically closed problem which admits the trivial solution, ud = vd = qd = Γd = 0.
To find a non-trivial (eigen) solution for the normal modes, we should seek complex
eigenvalues of either α for a given real ω (spatial stability) or ω for αr = 0 (temporal
stability). This paper focuses on neutral disturbances, for which the results of the
spatial and temporal stability approaches are identical (since αr = 0 and ω is
real). However, to find neutral characteristics, we use the spatial stability approach
because all eigenvalues of α are known for Rea = Res = ω = 0 and any m (SH98).
Eventually, by increasing the axial and/or swirl Reynolds numbers, Rea and Res

(which characterize the strength of the base flow), as well as frequency ω, we find α

by the Newton shooting procedure using the α value found at previous parameter
values for an initial guess. Applying this algorithm for a few spectral branches (that
have the largest αr at Rea = Res = 0) we find what disturbance mode is the most
dangerous, i.e. have the smallest critical values of Rea and Res .

In the shooting procedure, we start at an intermediate location, x = x0, with some
tentative values of vd, pd, ud, Γd, u

′
d and Γ ′

d , and integrate (6) in both directions: to
x = 1 and to x = xc. Then, we adjust the tentative values to satisfy a normalization
condition (e.g. vd(x0) = 1) and the boundary conditions except one (e.g. vd(xc) = 0) by
the Newton shooting procedure (these shooting iterations rapidly converge starting
with any tentative values because the problem is linear). Then, we look for an
eigenvalue α to satisfy the postponed boundary condition (e.g. vd(xc) = 0).

For numerical integration we apply the fourth-order Runge–Kutta algorithm and
the Chebyshev grid whose mesh decreases where required (i.e. within boundary layers
for large Re). The total number of grid points was typically 800. We also use 1600
grid points to validate accuracy.
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3. Stability of swirl-free jets
3.1. Stability of the Landau jet

First, we consider the stability of a swirl-free jet in an unbounded region driven by a
point source of momentum located at the coordinate origin.

3.1.1. Base flow

This flow is described by the exact solution of the Navier–Stokes equations (Landau
& Lifshitz 1987):

vb = −2(1 − x2)/(1 − x + 4/Rea), (8a)

where Rea = ub(1) = rva/ν (va = vr at x = 1) as follows from

ub = v′
b =

[
16Reax − 2Re2

a(1 − x)2
]/

[Rea(1 − x) + 4]2, (8b)

and thus Rea is the Reynolds number based on the velocity on the positive z-axis
and the distance from the jet source.

As Rea → ∞ while η = Rea(1 − x) remains bounded, (8b) yields

uin = 16Rea/(4 + η)2, (8c)

which coincides with the Schlichting (1933) solution for a round jet. Subscript in
in (8c) denotes the inner (boundary-layer) solution. Outside the near-axis boundary
layer, (8a) and (8b) give

vout = −2(1 + x), uout = −2, (8d)

as Rea → ∞; subscript out denotes the outer solution describing the flow induced by
a half-line sink of fluid located along the positive z-axis (i.e. the entrainment flow of
the jet).

3.1.2. Stability

Figure 2 depicts the results for neutral (αr = 0) disturbances. We have not found
neutral disturbances for azimuthal wavenumbers m other than m = 0 and m = ±1
(the results of § 3 are independent of the sign of m). In figure 2(a), the solid (dashed)
curves represent the dependence of radial wavenumber αi (frequency ω) on Reynolds
number Rea (αR denotes the product αiRea). We see that the axisymmetric (m = 0)
neutral disturbances have the critical Reynolds number, wavenumber and frequency
smaller than those for the helical mode.

Flow deceleration enhances the disturbance growth (via the mechanism discussed
later in this section). This enhancement, being larger for the axisymmetric disturbances
than for helical disturbances in swirl-free jets, makes the axisymmetric mode dominant.

In figure 2(b) we compare our results for the helical mode (solid curve) with
those obtained in the parallel-flow approximation for the Schlichting jet (dashed
curve, Morris 1976). For the minimum (critical) Reynolds number our results are:
Reac = 101, αi = 1.85, and ω = 84 while Morris’s results are: Reac = 177, αi = 2.2,
and ω = 83; the largest difference is in Reac and the least in ω.

To observe the asymptotic trend as Rea → ∞, we use Morris’s parameters (denoted
by subscript M): Reynolds number RM = (8Rea)

1/2, αM = αi(8/Rea)
1/2 and ωM =

ω(8/Re3
a)

1/2. The curves in figure 2(b) differ in two significant features:
(A) In our case, the upper branch has a local maximum (ωM = 1.15 at RM = 150)

and the lower branch has a local minimum (ωM = 0.037 at RM = 95) while the
parallel-flow theory gives monotonic variations of ωM as RM increases.
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Figure 2. (a) Neutral curves (αr = 0) of axisymmetric (m= 0) and helical (m= 1) disturbances
of the Landau jet (inset), ω is the frequency, αR ≡ αiRea , αi is the radial wavenumber, and
Rea is the Reynolds number based on the velocity on the axis and the distance r from the
jet source. (b) Comparison with the parallel-flow results (- - -, Morris 1976). The inset in (a)
shows a flow schematic: a streamline (solid), the flow direction (arrow), and the symmetry axis
(dotted).

(B) Our instability ranges for ωM and RM (also αM ) are larger than those for the
parallel theory.

Two factors can cause this difference: (i) the boundary-layer approximation
(Schlichting jet versus Landau jet) and (ii) the parallel-flow approximation. To
help evaluate the role of (i), figure 3(a) shows the radial velocity vr for both the
Landau (solid curve) and Schlichting (dashed curve) solutions as well as kinetic
energy Ed = |ud |2 + |vd |2/(1 − x2) of the neutral disturbance (all normalized by their
maximum values at a given r) as functions of polar angle θ at Reac = 101. The
disturbance energy peaks near the inflection point, where the base-flow shear reaches
its maximum, and Ed decreases as the shear decreases. Moreover, the profiles of
Ed and of the squared base-flow shear (being normalized by their maxima) nearly
coincide. This suggests the shear-layer nature of this instability. Since the vr profiles
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Figure 3. Dependence of the radial velocity vr of the free round jet (—, Landau; - - -,
Schlichting) and the energy Ed of (a) neutral helical (Rea = 101) and (b) neutral axisymmetric
(Rea = 28.1) disturbances.

for Landau’s and Schlichting’s solutions are very close within the cone, θ � 25◦

(which includes the high-shear region), the role of factor (i) appears negligible here.
In contrast, factor (ii) – the base-flow non-parallelism – is crucial, as discussed
below.

Flow deceleration effect. To illustrate the effect of flow deceleration, we represent
a disturbed streamline by a wavy curve (figure 4a). Stretching of the streamline by
acceleration (∂vbr/∂r > 0) decreases the wave amplitude (figure 4b); compression
of the streamline by deceleration (∂vbr/∂r < 0) increases the amplitude (figure 4c),
thus enhancing the instability (see § 5 for more detailed discussion of the deceleration
effect).

In swirl-free flows, the base-flow deceleration does not affect the spanwise
disturbance velocity. In terms of vorticity, the deceleration – by compressing the
flow in the axial direction and stretching it in the normal direction – decreases the
axial component (ωr ) and increases the azimuthal component, ωφ . This suggests why
the effect of the base-flow deceleration is stronger for axisymmetric modes (where
only ωφ �= 0) than for helical modes (where ωr �= 0). (The latter effect is analogous to
vortex rings impinging on a plate where the ring radius increase accentuates ωφ and
hence vr .)
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Figure 4. Diagram of (a) a parallel-flow disturbance and its (b) suppressed and (c) amplified
forms induced by the base flow acceleration (stretching, b) and deceleration (compression, c).

Thus, the base-flow deceleration by increasing the disturbance growth expands the
instability range for all the parameters (Rea , αi , and ω); this explains feature (B).
Concerning feature (A), the base-flow shear, i.e. the term r−1vdθ∂vbr/∂θ , plays an
important role. As Rea increases, the jet becomes thin in the θ-direction, so that
the shear, r−1∂vbr/∂θ , increases while the deceleration, ∂vbr/∂r , does not. Therefore,
the term, r−1vdθ∂vbr/∂θ , dominates the term, vdr∂vbr/∂r , i.e. the role of the base-flow
deceleration (which is the main non-parallel effect) diminishes and the instability
range becomes smaller and close to that in the parallel theory; this explains feature
(A).

Short waves are less sensitive to the flow non-parallelism than long waves, because
the disturbance acceleration vbr∂vdr/∂r becomes large for high wavenumbers and
also diminishes the role of the base flow acceleration vdr∂vbr/∂r . For this reason, the
convergence of our results to parallel ones, as RM increases, is faster for the upper
(than for the lower) branch of the neutral curve (figure 2b). For example, ωM = 0.93
and αM = 1.49 at RM = 500 on the upper branch are close to ωM = 0.91 and
αM = 1.46 at RM = ∞ (according to the parallel theory, Batchelor & Gill 1962).
(This agreement is an additional validation of our numerical procedure (note that the
shooting method we use has poor convergence for very large RM ).) Our calculations
show that ωM and αM increase with RM for large RM along the lower branch, e.g.
ωM = 0.052 and αM = 0.0814 at RM = 1000.

Thus, our results approach those from the parallel-flow theory as the Reynolds
number increases along the upper branch of the neutral curve; however, they reveal
(a) larger instability ranges for ωM and αM and (b) smaller critical RM than those in
the parallel-flow theory; both these effects are due to base-flow deceleration.

For axisymmetric (m = 0) disturbances, the difference between our and the parallel-
flow results is even more significant than for helical modes. Previous studies have
revealed no axisymmetric instability (see § 1), whereas we find that such instability
indeed occurs. Furthermore, it occurs for smaller Rea than helical instability does;
i.e. axisymmetric disturbances are the most dangerous. (We have explained why ωφ

amplification is larger for axisymmetric ring-like vorticity perturbations.)
The fold of the m = 0 curves in figure 2(a) corresponds to Reac = 28.1 where

αi = 0.097 and ω = 2.71. Although Reac for m = 0 is significantly smaller than Reac

for m = 1 and therefore the role of viscous diffusion increases, the disturbance energy
Ed is again localized in a narrow range of θ . This is clear from figure 3(b) which
also shows that, despite the fact that the vr profiles for Landau’s (solid curve) and
Schlichting’s (dashed curve) differ away from the axis at Rea = 28.1, the profiles are
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Figure 5. Meridional (φ = const) cross-section of - - -, undisturbed —, and disturbed stream
surfaces of the Landau jet for (a) m= 1 and (b) m= 0 modes. Amplitudes of the disturbances
are enlarged for better visibility. Note that the wavelength of the axisymmetric mode is about
20 times that of the helical mode.

still close near the axis (θ < 20◦) where Ed is localized. Therefore, similar to helical
modes, the boundary-layer approximation (introducing very small profile change)
cannot be the reason for the difference between our and the parallel-flow results
concerning the axisymmetric instability.

In contrast to the θ-extent, the streamwise wavelength, 2π/αi , of the axisymmetric
critical disturbances is remarkably larger than that of helical disturbances, as figure 5
illustrates. This is a side effect of the decrease in Reac (from 101 to 28); viscous
dissipation suppresses disturbances of even small wavenumber as Rea decreases
and thus αi of growing waves decreases. Figure 5 shows the φ = constant cross-
sections of stream surfaces for (a) helical and (b) axisymmetric neutral disturbances at
Rea = 101 and Rea = 28.1, respectively. The dashed curves depict undisturbed stream
surfaces while the solid curves depict disturbed ones; (infinitesimal) disturbances are
exaggerated here for better clarity. Streamlines are undisturbed upstream of the jet
source (z < 0) where the flow accelerates while the oscillations increase downstream
proportional to r (although oscillation amplitudes are fixed). Figure 5 also illustrates
the difference between our similarity modes (whose spatial size is scaled by a local
value of r and, accordingly, increases with increasing r) and the parallel-flow modes
(whose wavelength is invariant downstream).

Another feature is that waves on streamlines in figure 5 have a tendency to overturn
as the disturbances travel downstream. This occurs because the wave-propagation
velocity c = ω/αi is θ-independent while the jet velocity vr decreases as θ increases,
so c/vr increases with θ causing the peaks (maximums of the distance from the axis)
to move faster than the valleys relative to the local fluid velocity.

An interesting effect of the non-parallel flow is that c can be larger than vrm (the
maximum of vr at a given r) as figure 6 shows, where C = c/vrm. This differs from
C < 1 in the parallel-flow stability theory (Drazin & Reid 1981, p. 142). (Note that
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Figure 6. Phase speed C of neutral disturbances in the radial direction for a Landau jet
(inset); C is scaled by the maximum radial velocity at a given r .

U and L are used to denote the upper (large ω) and lower (small ω) branches of
neutral curves; for m = 1, U and L notations are the usual, but for the m = 0
curves in figures 6 and 7(b), their relative positions are opposite.) While for helical
(m = 1) disturbances, C < 1 on both the U and L branches of the neutral curve, C

significantly exceeds 1 for the axisymmetric modes on the L branch of the neutral
curve in figure 6, where αi is very small (see figure 2); i.e. the wavelength is very large
(the upper branch of the m = 0 neutral curve in figure 6 corresponds to the lower
branch in figure 2). A possible reason for C > 1 is that long waves have more inertia
than short waves. As the neutral disturbances propagate from the high- to low-speed
flow regions, long waves retain their high momentum gained upstream, whereas short
waves, being less inertial, adjust their momentum to the local velocity of the flow.

Note, however, that the far-field approximation is questionable for very long waves
because their length can exceed the distance to the jet source, and therefore the near-
field flow region and the nozzle geometry (neglected in the far-field approximation)
can influence the stability characteristics by decreasing the speed of wave propagation.

The wavelength of axisymmetric critical disturbances is larger than that of helical
disturbances and according to the vortex-ring analogy, the flow non-parallelism effect
on the axisymmetric modes is stronger than on helical disturbances. Our calculations
have confirmed that in the parallel-flow approximation as well as in weakly non-
parallel approximation, no axisymmetric instability occurs. Thus, only the strongly
non-parallel approach reveals the axisymmetric instability.

3.1.3. Comparison with experimental data

Experimental data on the round jet stability have been obtained in terms of ReD ,
the Reynolds number based on the flow-rate velocity and the nozzle diameter. The
relation between ReD and the far-field RM [= (3J/πρν2)1/2; J is the flow force] depends
on the velocity profile at the nozzle exit: ReD = RM and ReD = RM2/

√
3 for the

parabolic (laminar) and top-hat (turbulent) distributions, respectively (Morris 1976).
Since the coefficients are rather close and the parabolic distribution is more suitable
for the laminar jets studied here, we take for comparison ReD = RM = (8Rea)

1/2 (the
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Figure 7. Neutral curves for the axisymmetric (m=0) and helical (m= 1) instabilities of the
Squire jet. For notation see figures 2 and 6. The inset shows the base-flow diagram: a streamline
and plane (solid), the flow direction (arrow), and the symmetry axis (dotted).

latter relation follows from the fact that rva/ν = 1
8
R2

M for the Schlichting round jet;
va is the velocity on the axis). Then, our results for critical values of ReD are 15 for
axisymmetric and 28.4 for helical disturbances.

The first experimental data reported by Batchelor & Gill (1962) were apparently
unpublished results by Schade who observed in 1958 steady laminar jets up to ReD

of several hundred. In contrast, Viilu (1962) found that the critical ReD for the round
jet instability is between 10.5 and 11.8. This discrepancy between Schade’s and Viilu’s
results prompted Reynolds (1962) to study jets in the range 10 < ReD < 300. He
observed four modes: (a) puffs near the nozzle (10 < ReD < 70), (b) axisymmetric
‘condensations’ well away from the nozzle (50 < ReD < 200), (c) sinuous undulations
of long wavelength far from the nozzle (150 < ReD < 300), and (d) formation of
foot-shaped pockets of dye (200 < ReD < 300). Events (a) are irrelevant for our
far-field analysis, the observation of the axisymmetric instability (b) at smaller ReD

than that for the bending instability (c) is consistent with our result: the critical ReD

is smaller for axisymmetric modes than for helical.
We attempt to explain the larger values of ReD for the disturbances observed by

Reynolds (compared with critical ReD predicted by our theory). Since the experiment
provided no forcing of growing modes, their initial amplitude (at the nozzle exit)
was very small, i.e. signal/noise ratio � 1. Therefore, the instability mode requires a
significant distance to amplify up to a visually distinguishable amplitude. For slightly
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supercritical ReD where the spatial growth rate is small, this distance can exceed the
tank length in the experiment, thus making the instability invisible. At larger ReD , as
the growth rate increases, the instability modes become visible at smaller distances
from the nozzle. One could argue that this experiment revealed instability only for
ReD much larger than the critical value.

Experiments by Mollendorf & Gebhart (1973) show strong influence of buoyancy
(even small) on the jet stability. They did not observe the axisymmetric instability,
possibly because of the rather large ReD (> 2000 for the lowest level of buoyancy)
where transition occurs in the near field for all frequencies. We conclude that our
results do not contradict experimental observations, though further experimental
(with controlled disturbances) and theoretical studies (addressing non-similar flows)
are required. Now we will investigate effects of a no-slip or a stress-free surface on
the jet stability.

3.2. Stability of the Squire jet

3.2.1. Base flow

To examine the effect of boundary conditions on stability characteristics, we first
consider a swirl-free jet in half-space (see the inset in figure 7a) that is also governed
by an exact solution (Squire 1952):

vb = −2Rep(1 − x)
/{

b cot
[

1
2
b ln(1 + x)

]
− 1

}
, (9a)

where b = (2Rep +1)1/2, and Rep is the Reynolds number based on the distance from
the origin and the velocity on the plane, x = 0. This follows from

ub = v′
b = 2Rep

/{
b cot

[
1
2
b ln(1 + x)

]
− 1

}
− Rep(1 − x)(1 + x)−1b2

{
b cos

[
1
2
b ln(1 + x)

]
− sin

[
1
2
b ln(1 + x)

]}−2
, (9b)

that yields ub = −Rep at x = 0; the negative sign appears because we consider the
velocity at the plane directed to the jet source and take its absolute value for Rep .

Here we study the stability of this solution under either no-slip or stress-free
conditions for disturbances on the plane. What conditions to use depends on a
physical problem, as explained below.

Solution (9a) is relevant to flow induced by a converging motion of planar material.
Such a flow can model jets developing near accretion disks in cosmic space (Shtern
& Hussain 2001). The material of the disk, moving by gravity toward a central body,
drives a jet-like flow of ambient gas normal to the disk (see the inset in figure 7a).
Since the disk density is much higher then the gas density, the no-slip conditions are
relevant for disturbances of the gas flow.

Another application is the Marangoni convection induced by a sink of heat on
the liquid surface (SH98). At zero Prandtl number, the temperature field is flow-
independent and the problem reduces to a flow driven by tangential stresses given at
the liquid surface. Since prescribed stresses drive the liquid, the stress-free conditions
are relevant for disturbances of this flow.

For both the problems, a strong jet develops even at moderate Rep and the jet
velocity (Rea) tends to infinity as Rep approaches 7.67 (SH98).

3.2.2. Stability results

Figure 7 depicts data for neutral disturbances satisfying the no-slip condition at
the plane. The data for the m = 1 helical disturbances, e.g. Reac = 100.2, αi = 1.83
and ω = 82.2, are very close to that for the Landau jet. Also, the results on helical
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instability of the Squire jet differ by less than 0.1% for the stress-free and no-slip
conditions at the plane.

A physical reason for these results being so close is that neutral disturbances
occupy only a region near the jet axis: the disturbance energy, Ed , rapidly decays as
the polar angle increases, so that Ed becomes negligible for θ > 20◦ (figure 3a). As
the disturbance totally vanishes for larger θ , it is not sensitive to the flow boundary
location and the conditions (no-slip or stress-free) are posed there. The effective
boundary condition appears to be a rapid decay of disturbance as the distance from
the jet axis increases.

Thus, our results show that the helical instability occurs within the near-axis
boundary layer, i.e. inside the Schlichting jet developing for large Rea in the both
Landau and Squire solutions. This supports our view that our results and the parallel-
flow-theory results for helical instability differ owing to deceleration, and not because
of the boundary-layer approximation of the base flow.

The difference in stability results for axisymmetric disturbances of the Landau
and Squire jets is more remarkable: Reac = 53.07, αi = 0.417 and ω = 23.5 (no-
slip); Reac = 48.4, αi = 0.323 and ω = 16.2 (stress-free); while for the Landau jet,
Reac = 28.1, αi = 0.097 and ω = 2.71. So these large-scale (i.e. small αi) axisymmetric
disturbances appear rather sensitive (in contrast to helical modes) to the difference in
the boundary conditions and in the flow region. To study this dependence in more
detail, we now consider flows inside a cone.

3.3. Stability of a jet in a cone

3.3.1. Base flow

The Squire solution is easily generalized for a conical flow region, xc � x � 1:

vb = −Rep(1 + xc)(1 − xc)
−1(1 − x)

{
b cot

(
1
2
b ln[(1 + x)

/
(1 + xc)] − 1

}−1
,

where b = [2Rep(1 + xc)(1 − xc)
−1 + 1]1/2 and ub = −Rep at x = xc.

This solution is a model of a capillary flow in a conical liquid meniscus in
electrosprays (Shtern & Barrero 1995).

3.3.2. Stability results

Figure 8 shows the critical value of Rea versus the cone angle θc (xc = cos θc). The
results include those for the Squire (xc = 0) and Landau (xc = −1) jets as well. The
solid curves correspond to the stress-free condition on the cone surface, x = xc, and
the dashed curves are for no-slip. The numbers near curves indicate the m value
and curve 0s is for the axisymmetric steady-state instability causing the appearance
of swirl in liquid cones (Shtern & Barrero 1995). Our calculations show that the
minimum Rea for this mode occurs at ω = 0 and αi = 0, so this instability is not
oscillatory either in time or in space.

The m = 1 curves for the no-slip and stress-free conditions coincide within the
accuracy of the drawing in figure 8, while the m = 0 curves are distinct although
close. These features confirm the boundary-layer character of the m = 1 instability
and the global character of the axisymmetric instability.

We found no instability of these flows with respect to disturbances with m > 1 for
Rea > 0 (in oppositely directed flows where Rea < 0, the m > 1 instability does occur,
e.g. see SH98). In contrast, the |m| � 1 instability is typical for swirling jets, as we
show below.
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Figure 8. Dependence of the critical Reynolds number Rea on the cone angle for swirl-free
jets inside a cone of angle θc (xc = cos θc). —, stress-free; - - -, no-slip condition. Numbers
near the curves show the azimuthal wavenumber m. Curve 0s is for the steady-state instability
leading to the appearance of swirl.

4. Stability of swirling jets
4.1. Base flow

Consider a swirling flow induced by a half-line vortex located on the negative z-axis,
i.e. at x = −1. Such a flow can model a tornado or a leading-edge vortex (Shtern &
Drazin 2000). These flows can expand abruptly in a wide-angle cone (wake of vortex
breakdown). The half-line singularity mimics a consolidated vortex core upstream of
vortex breakdown.

The flow characteristics are the vortex circulation and the flow force J acting on
a surface surrounding the singularity. Since there is no source of momentum outside
the half-line vortex, the surface can be chosen rather arbitrarily. For example, the
plane, z = z0 > 0, is an appropriate choice which Long (1961) applied to the near-axis
boundary layer. The corresponding dimensionless parameters are the swirl Reynolds
number Res = Γb(−1) and J0 = J/(2πρν2) or Long’s parameter M = 2πJ0/Re2

s .
In contrast to swirl-free jets studied in § 3, the base flow for swirling jets has no

analytical solution, except for some limiting cases. So, together with integration of
the stability problem, we must numerically calculate the base flow as well. Referring
to Shtern & Hussain (1996) for details, we show here only the governing equations,

(1 − x2)Ψ ′ + 2xΨ − 1
2
Ψ 2 = F, (10a)

(1 − x2)F ′′ + 2xF ′ − 2F = Γ 2
b , (10b)

(1 − x2)Γ ′′
b = Ψ Γ ′

b, (10c)

the boundary conditions,

Ψ (1) = Γb(1) = 0, Ψ (−1) = 0, Γb(−1) = Res, (10d)

and the integral condition,∫ 1

0

{x(2 − Ψ ′)Ψ ′ − x[(2 − Ψ )Ψ − xF ′]/(1 − x2) − F ′} dx = J0, (10e)
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Figure 9. Critical swirl Reynolds number Res vs. the axial Reynolds number Rea for one-cell
swirling flows. Numbers near curves indicate the azimuthal wavenumber m. o, time-oscillating
and s, steady neutral modes.

used for the numerical integration of the base flow. In (10), Ψ = −vb, Ψ ′ = −ub, F

is an auxiliary function replacing pressure, pb = (2xΨ − F ′ − Ψ 2)/(1 − x2), and the
prime denotes differentiation with respect to x.

Depending on Res and J0, the flow has a single cell where the fluid goes from
z = −∞ to z = ∞ or two cells where the fluid goes from both z = −∞ and z = ∞
toward the coordinate origin along the axis and then away from the origin along a
conical surface, x = xs , which separates the flow cells. As Res → ∞, a boundary layer
can develop near the positive z-axis, x = 1; the flow reduces to Long’s vortex in this
region. However, the boundary layer can develop near x = xs as well (i.e. away from
the axis); this high-Res flow is not described by Long’s approximation.

An important feature is that three different solutions can exist at the same values of
Res and J0, comprising a hysteresis loop (Shtern & Hussain 1996), so these parameters
do not uniquely specify the flow (e.g. curve a in figure 1a). For this reason, we use
either Rea = ub(1) or xs as a control parameter instead of J0 because Rea uniquely
specifies the one-cell flow where Rea � 0 and xs uniquely specifies the two-cell flow
(where Rea < 0).

Shtern & Drazin (2000) studied the spatial stability of this flow to time-monotonic
(zero-frequency) disturbances. Here, we consider generic (time-oscillating, three-
dimensional) disturbances and reveal new important features.

4.2. Stability of one-cell flows

Figure 9 shows the dependence between the swirl Reynolds number Res and the
axial Reynolds number Rea (based on the velocity on the axis, x = 1) at the critical
neutral points corresponding either to the minimum Rea at fixed Res (for curves 0,
1 and −1) or to the minimum Res at fixed Rea (for curves (−2o, 2s and −1). The
numbers near the curves indicate values of the azimuthal wavenumber m, and ‘o’
and ‘s’ denote oscillating and steady neutral disturbances, respectively. Curve 2s is
taken from Shtern & Drazin (2000) for comparison whereas the other curves are
new; the comparison shows that time-oscillatory disturbances are more dangerous
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than time-monotonic (as curve −2o lies below curve 2s). The flows are stable in the
region located below the m = −1 curve and to the left of the m = 0 curve.

The points of the curves 1, 0 and −1 located on the abscissa (Res = 0) in figure 9
correspond to the critical values of Rea for the Landau jet. The curves 1 and −1
merge at Res = 0 because Reac is independent of the sign of m for swirl-free flows.
Swirl breaks this symmetry and the curves 1 and −1 rapidly diverge as Res increases.
Critical Rea is smaller for the m = −1 mode compared with the m = 1 mode at the
same value of Res .

One possible reason for this feature is in the orientation of the disturbance (ωd) and
base-flow (ωb) vorticity vectors. For the Kelvin–Helmholtz instability, these vectors are
parallel for the most growing disturbance (as discussed in § 3.1.2). We have calculated
the vorticity components for disturbances,

ωdr = −Γdx −vdφ/(1−x2), ωdθ = (udφ −Γdξ )/ sin θ, ωdφ = [vdξ +(1−x2)udx]/ sin θ,

and for the base flow,

ωbr = −Γ ′
b, ωbθ = 0, ωbφ = −(1 − x2)ψ ′′/ sin θ,

(scaled by ν/r2) at the θ value where |ωb| has its maximum, and have found that the
angle between ωd and ωb is smaller for the m = −1 mode than for the m = 1 mode. As
the angle decreases, the growth rate increases, thus explaining why counter-rotating
modes are more dangerous than co-rotating. This reason is valid for parallel flows as
well.

Since Res < 10 and Rea < 32 for stable flows, their boundary-layer approximation
is questionable. Recall that Long’s Type II solution corresponds to the intermediate
branch of the hysteresis loop (Shtern & Hussain 1996) which develops only for
Res > Rescu = 11.5 (figure 1a). For Res < Rescu, where the instability occurs, there
is no hysteresis and, therefore, no Long’s Type II solution. Therefore, this solution
either does not exist (for Res < Rescu) or is unstable (for Res > Rescu). We conclude
that our results are stronger than previous results on the stability of Long’s Type II
solution, obtained using the boundary-layer approximation (i.e. for Res 
 Rescu).

Long’s Type II solution includes annular jets where the location of the maximum
axial velocity (at a fixed r) is shifted away from the axis of symmetry. In contrast to
Long’s Type II solution, annular swirling flows exist for any small Res as well (see
the Rea < 0 region in figure 1a). To understand their instability character better, we
now consider in more detail the annular flow with zero velocity on the axis (Rea = 0,
see the inset in figure 10c).

Figure 10 shows neutral curves at Rea = 0. An important new feature is the
character of the m = −2 instability. The phase velocity, C = ω/(αivrmax) is negative
on most of the m = −2 neutral curve (figure 10c) including the vicinity of the Res

minimum. In addition, this double-helix mode rotates in the positive-φ direction, i.e.
in the same direction as the base flow (co-rotation), while the single-helix mode is
counter-rotational.

The m = −2 neutral curves in figures 10(b) and 10(c) intersect the lines ω = 0
and C = 0 as αi increases along the upper branch of the m = −2 neutral curve in
figure 10(a) (these intersection points comprise curve 2s in figure 9). Thus, short-wave
modes are counter-rotational and have positive phase velocity whereas long double-
helix waves are co-rotational and have negative phase velocity. As discussed in § 3.1.2,
short waves are less sensitive to the flow non-parallelism and satisfy the condition,
0 < C < 1, which is valid for disturbances in parallel flows. In contrast, the phase
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Figure 10. Neutral curves of the annular swirling jet at Rea =0 (zero velocity on the axis; see
inset) for helical disturbances with the azimuthal wavenumber m= −1 and m= −2. Dependence
of (a) the radial wavenumber αi , (b) frequency ω, and (c) phase velocity C on swirl Reynolds
number Res . The inset in (c) sketches the dependence of the base-flow radial velocity on the
polar angle.

speed of long waves can be out of this range: C > 1 for long axisymmetric waves
(§ 3.1.2) and C < 0 for the m = −2 long waves (figure 10c).

Let us attempt now to interpret these results for vortex breakdown. The first and the
most popular explanation of axisymmetric (bubble-like) vortex breakdown is in terms
of long standing waves (Squire 1956; Benjamin 1962; Keller, Egli & Exley 1985). An
alternative view is that axisymmetric vortex breakdown is a flow separation from the
axis, rather than a wave or an instability effect (Hall 1972; Goldshtik & Hussain
1998). Gelfgat et al. (1996) studying stability of a confined swirling flow found that
the instability and the development of a separation zone (vortex-breakdown bubble)
are different phenomena. Our results are in favour of the separation scenario for open
flows as well. Indeed, we have shown that the axisymmetric instability is oscillatory,
so that no standing axisymmetric wave occurs in swirling jets. In addition, Shtern
& Drazin (2000) showed that the flow reversal (i.e. appearance of a separation
zone) occurs without instability. These two results together support the view that the
bubble-like vortex breakdown is a flow separation.
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Figure 11. Dependence of the radial vr and swirl vφ velocities as well as of the meridional
Em and swirl Es kinetic energies of the m= −2 neutral disturbances on the polar angle θ at
critical Res for the annular jet with Rea = 0 (figure 10).

In contrast, the helical vortex breakdown undoubtedly is an instability effect because
it breaks the axisymmetry of the upstream flow (any symmetry breaking is a result
of instability, i.e. of a growing disturbance transforming the symmetric state into an
asymmetric one).

Being long in the radial direction, the m = −2 mode has also a wide extent in the θ-
direction (cf. figure 11 with figures 3 and 4). Figure 11 also shows that the disturbance
energy of the swirl motion, Es = |Γd |2/(1 − x2), is very small compared with that of
the meridional motion, Em = |ud |2 + |vd |2/(1 − x2), i.e. the instability affects mainly
the meridional motion. This fact indicates that the double-helix instability results
from the radial divergence of streamlines (significantly enhanced by swirl) rather than
being due to the shear of the base flow. The results of the following section support
our view that this instability is of the divergent type.

4.3. Stability of two-cell flows

Figure 12 shows the critical Res versus the angle θs of conical surface separating the
flow cells (xs = cos θs). The numbers near the curves indicate values of m, and the
letters ‘o’ and ‘s’ denote oscillating and steady neutral modes. Figure 12 does not
depict neutral curves for |m| > 2 because their critical Res are larger than those for
the |m| � 2 modes. The m = −1 helical mode appears to be the most dangerous (i.e.
corresponding to the smallest critical Res) in the entire range, −1 < xs � 1.

The m = ±2 modes are also of physical interest because critical Res values are
close for m = ±2 and m = −1 modes and these modes can interact (in the nonlinear
development of instability). For small separation angles θs (i.e. for xs close to 1), only
the m = −2 mode can be neutral or growing while the m = 2 disturbances decay.
As decreasing xs passes through xs = 0.9, a new important effect occurs: a neutral
mode with αi = 0 appears. Along the αi = 0 curve in figure 12, the Res value goes to
infinity as increasing xs approaches 0.9; the αi = 0 neutral disturbance does not exist
for xs > 0.9. The αi = 0 disturbances oscillate in phase along rays φ = const.

Changing the sign of αi is equivalent to changing the sign of m. Indeed, the stability
problem is invariant under the transformation {m → m, αi → −αi, ω → −ω, Γd →
−Γd , and complex conjugation} according to (5), so that it is sufficient to consider
only positive αi . When decreasing αi passes through 0 along a neutral curve, this is
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Figure 12. Critical value of swirl Reynolds number Res vs. the separation angle θs (xs = cos θs)
for two-cell flows. Numbers near curves denote values of m; o, oscillating and s, steady neutral
modes; the dashed curve (αi = 0) is for standing-wave oscillations. The point, where curves
2o and −2o touch the αi = 0 curve, separates curves 2o and −2o. The inset shows a flow
diagram: streamlines and singularity half-line (solid), the flow direction (arrows), separating
line (dashed), and the symmetry axis (dotted).

equivalent to the appearance of a neutral mode with αi > 0 for the opposite sign
of the azimuthal wavenumber m. The neutral curve αi(Res) for negative m is the
reflection with respect to line αi = 0 of the curve αi(Res) for positive m. Figure 13
shows (at xs = 0) such neutral curves along which αi passes through zero.

The base flow at xs = 0 is a swirling jet spiralling out along the equatorial plane,
x = 0, as the inset in figure 13(a) depicts. Figure 13 presents only positive values of
αi and ω because the results are symmetric to the transformation {m → −m, αi →
−αi, ω → −ω}. In figure 13(a), the neutral curves for m = 2 and m = −2 intersect at
αi = 0 and Res = 10.05 (which is slightly larger than the critical value, Resc = 9.87).
At αi = 0, the disturbance is proportional to exp[i(mφ − ωτ )] with no oscillation in
the r-direction. Since ω > 0 for m = 2 at αi = 0, this mode rotates in the positive-φ
direction (co-rotation: dφ/dτ = ω/m > 0), as also does the neutral disturbance at
Res = Resc. The m = −2 neutral solution at αi = 0 is the complex conjugate of the
m = 2 solution, therefore both the solutions describe the same mode.

For αi > 0, the m = 2 curve has smaller Res compared with the m = −2 curve
(figure 13a), i.e. the m = 2 mode is more dangerous than the m = −2 mode. Since
along the m = −2 curve in the range αi � 0, Res reaches its minimum value at αi = 0,
this minimum can be interpreted as the critical Res for the m = −2 mode.

As increasing xs passes through xs = 0.43 (where the αi = 0 curve touches the
m = 2 and m = −2 curves in figure 12), the m = −2 mode becomes more dangerous
than the m = 2 mode. So the αi = 0 curve serves as the continuation of the curve
−2o for xs < 0.43 and as the continuation of the curve 2o for xs > 0.43 in figure 12.
As increasing xs approaches xs = 0.9, Res goes to infinity along the αi = 0 curve.
This fact indicates that there is no instability to the m = 2 disturbances for xs > 0.9
that agrees with the results for xs = 1 shown in figure 10, where the m = −2 mode is
only responsible for the double-helix instability.
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Figure 13. Neutral values of (a) radial wavenumber αi and (b) frequency ω vs. swirl Reynolds
number Res for a swirling jet spiralling out along the equatorial plane, θ = 90◦ (inset sketches
the meridional flow). Azimuthal wavenumbers m= −1 and m= ±2 characterize the most
dangerous modes.
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Figure 14. Neutral curve for single-helix disturbances of two-cell flow with xs = −0.5
(θs = 120◦; inset sketches the meridional flow). Steady-state instability (at ω = 0) is marked
by S; ω∗ ≡ ω/[1 + |ω|/ log(1 + |ω|)].
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For xs < −0.2, the phase velocity, c, changes its sign for single-helix disturbances
as well. Figure 14 shows this feature for a two-cell flow with xs = −0.5 (see the
inset). We rescale frequency, ω∗ = ω/[1 + |ω|/ log(1 + |ω|)], to plot the dependences
of wavenumber αi and frequency ω on Res in one figure. The frequency passes
through zero at point S that corresponds to the steady-state instability. For smaller
Res , c is positive and for larger Res , there are disturbances with negative c. For all
swirling flows considered here, the oscillatory instability is more dangerous that the
steady-state instability studied by Shtern & Drazin (2000).

A common feature for all separation angles of the two-cell flow is that the
meridional-motion part Em of the disturbance kinetic energy is significantly larger
than the swirl-motion part Es for critical disturbances. We interpret this fact that
the instability results from the radial divergence of streamlines (provided by swirl),
but not from the direct effect of the swirl. Indeed, swirl-free flows with the radial
divergence of streamlines are also unstable to azimuthal modes (SH 98) (the simplest
example of the divergent instability occurs in the planar source flow which is shear-
free; Goldshtik et al. 1991) and this instability (occurring for arbitrarily large m

as Reynolds number increases) is very similar to that for the swirling jets. Physical
reasons for this similarity are discussed in more detail below.

5. Concluding discussion
Our results differ significantly from known results on instability of round jets in

two major aspects: (i) swirl-free conical jets are unstable to axisymmetric disturbances
(prior studies missed this instability), and (ii) the helical instability of both swirl-free
and swirling jets occurs for smaller Reynolds numbers than those predicted by quasi-
parallel or boundary-layer approximations. These differences stem from the strongly
non-parallel character of the flow – a feature properly accounted for by the approach
developed here.

This approach exploits the fact that the base flows, being conically similar, are
far-field approximations of practical flows, permitting a helpful transformation of
variables and justifying the far-field approximation for disturbances. As a result, we
reduce the linear stability problem to ordinary differential equations for these strongly
non-parallel flows.

This reduction permits a detailed investigation of the flow stability using neither
boundary-layer nor parallel-flow approximations. This investigation reveals two
important features of non-parallel flows, which significantly affect their stability: (A)
deceleration that increases the growth rate of the shear-layer instability and (B) swirl-
induced wide divergence of streamlines that causes an additional – divergent –
instability occurring even in shear-free flows. The boundary-layer and quasi-parallel
approximations fail to account for both these features adequately. Although the
parallel theory predicts that decelerating flows are less stable than accelerating (e.g.
for the Falkner–Scan boundary layers), this prediction is based only on the difference
in velocity profiles, particularly, the appearance of the inflection point in the profile
of the decelerating flow, which is a side effect of the flow deceleration.

Unfortunately, the parallel-flow (as well as boundary-layer) approximation misses
the direct destabilizing effect of the base-flow deceleration. The term responsible for
this destabilizing effect is vds∂vbs/∂s (s denotes the streamwise coordinate and velocity
component while d and b mark the disturbance and base velocities), as follows from
the streamwise momentum equation,

∂vds/∂t + vbs∂vds/∂s = −vds∂vbs/∂s + other terms.
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The first term in the right-hand side (neglected in the parallel-flow theory) contributes
to the disturbance growth rate positively when the base flow decelerates (∂vbs/∂s < 0)
and negatively when the base flow accelerates (∂vbs/∂s > 0). Figure 4 provides a
diagram of this effect.

The parallel-flow theory misses and our approach accounts for this destabilizing
effect of deceleration; that explains the difference in the stability results. The difference
is expected to be more prominent for large-scale disturbances than for small-scale ones.
Indeed, ∂vds/∂s increases with the streamwise wavenumber while ∂vbs/∂s does not.
Therefore, vbs∂vds/∂s dominates vds∂vbs/∂s for short waves and this fact diminishes
the destabilizing effect of the base-flow deceleration.

Our results for swirl-free jets agree well with this expectation: the axisymmetric
neutral mode has a larger wavelength than the helical mode and the more intense
stretching of their vorticity (as for vortex rings). Accordingly, the difference between
our and the parallel-flow results is more significant for axisymmetric disturbances.
The parallel-flow theory predicts no axisymmetric instability whereas our approach
reveals that this instability does occur. Moreover, it is even more dangerous than the
helical instability. In contrast to this qualitative mismatch in axisymmetric instability,
the results differ only quantitatively (parallel-flow Reac is nearly twice our Reac) for
helical instability.

The physical reason for axisymmetric disturbances being more dangerous than
helical ones in swirl-free jets is probably due to the combined effects of the shear-layer
(Kelvin–Helmholtz) instability and flow deceleration. The role of shear is clear from
the equation for disturbance kinetic energy Ed: ∂Ed/∂t = −vdrvdθ r

−1∂vbr/∂θ +other
terms. The first term on the right-hand side being positive causes Ed to grow. The
vortex-dynamics mechanism of this instability (Batchelor 1967, p. 515) shows that
a wavy disturbance of a vortex sheet in the plane normal to the base-flow vorticity
has a positive feedback: progressive accumulation of vorticity in clumps causes the
perturbation to grow. Since a spanwise disturbance has no positive feedback, a two-
dimensional mode is more dangerous than a three-dimensional mode of the same
magnitude of wave vector.

For swirl-free jets, the base-flow deceleration just enhances the shear-layer (Kelvin–
Helmholtz) instability. The shear-layer character of this instability is apparent from
the fact that the neutral disturbances occupy only the high-shear flow region
near the inflection point of the base velocity profile and vanish away from this
region (distributions of critical-disturbance energy and of the base-flow shear nearly
coincide). This shear-layer instability induces travelling-wave neutral modes and is
limited to disturbances with the azimuthal wavenumber m = 0 and m = ±1 only.

The other non-parallel factor – strong divergence of streamlines – leads to an
additional divergent instability that occurs even without shear, e.g. in a planar source
flow (Goldshtik et al. 1991). In contrast to the shear-layer instability, the divergent
instability causes the growth of modes with arbitrarily large m as the Reynolds
number increases.

For the flows studied here, the strong divergence of streamlines results from the
centrifugal effect of swirl that pushes the fluid away from the axis. This swirl-induced
divergence makes a difference: the divergent instability of swirl-free flows (e.g. the
planar source flow) is symmetric with respect to the sign of m whereas swirl breaks
this symmetry; counter-rotating (m < 0) disturbances are typically more dangerous
than co-rotating (m > 0) ones. Swirl breaks this symmetry not only for the divergent
but also for shear-layer instability (see curves 1 and −1 in figure 9 showing that the
m = −1 instability is more dangerous that the m = 1 instability, even for weak swirl).
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The angle between vectors of the base-flow and disturbance vorticity is smaller for
the m = −1 mode than for the m = 1 mode. This agrees with the Kelvin–Helmholtz
mechanism where the most-growing-disturbance vorticity and the base-flow vorticity
are parallel.

Our results also show that the shear-layer instability of conical jets is oscillatory
whereas the divergent instability involves steady-state (zero frequency) modes as well.
The critical Reynolds numbers for both the divergent and shear-layer instabilities are
here so small that the boundary-layer approach is invalid. In particular, the Long’s
Type II boundary-layer solution disappears for critical values of Res (< 10 which is
less than the cusp Res = 11.5), whereas its stability features have been much studied.

An effect occurring in two-cell swirling flows is the existence of precession modes.
These disturbances have αi = 0 (see figure 12; αi is the radial wavenumber) and
counter-rotates or co-rotates with respect to the base-flow swirl (depending on the
separation angle of the two-cell flow). This might help to explain the development of
jet precession in combustion chambers (Nathan, Hill & Luxton 1998).

Thus, our study has revealed new important stability features of strongly non-
parallel swirl-free and swirling jets.
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