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Important new features are found for a family of swirling jets with velowgityz™", wherez is the
distance from the jet origin. First, there is a sharp minimum of the pressure coefficient at a certain
value of the swirl humbeiSw which is nearlyn independent; this feature can be utilized in
technological devices. Second, @w increases, a separation zone develops, where the fluid is not
at rest in the inviscid limit(contrary to the claims of recent vortex breakdown thegrigbese
results are obtained under the boundary layer approximation for incompressible jets characterized
by nandSw=v yyn/v,m, Wherev 4, andv,, are the maximal values of the swirl and longitudinal
velocities atz= const. Unlike prior results viewed in terms of parametéwhich is thev 4 /v, ratio

at the outer edge of the jethe solution dependence &wis found similar for botm<1 andn>1.

For anyn, (a) the pressure coefficient is minimum &iv=0.65; (b) two solutions exist forSw

<Sw; (fold value, none forSw>Sw; ; (c) asSwdecreases, the jets either consolidate near the axis
or separate from it, depending on the solution branch;(dnthe flow in the separation zone tends

to become swirl-free and potential. 000 American Institute of Physics.

[S1070-663(100)01311-9

I. INTRODUCTION nally, U. andp. recover toU,, andp., in region IV (vortex
wake.
Typical features of swirling flows include the develop-  Since the vortex lift occurs because pressure above the

ment of recirculatory zone's two or more states occurring wing is smaller(due to the vortexthan pressure below the
at the same values of control paramefetand jump transi-  wing, an increase in the area of low pressure can signifi-
tions between flow statésAlthough these effects are of both cantly enhance the lift. One goal of this paper is to examine
fundamental and practical interest—being observed inwhat flow pattern corresponds to the pressure minimum. This
tornadoes, over delta wings of aircraft,and in vortex  knowledge, along with proper control methotisg., using
device§—there is still no consensus on the explanation ofwinglets and blowiny can help to expand the region of low
their mechanisms. pressure and thus to increase the vortex lift of delta wings
Consider, for example, a flow over a delta wifigset in - and to intensify adiabatic cooling caused by pressure drop in
Fig. 1. Flow separation from the leading edge provides aygrtex refrigerators.
source of Vorticity(vortex sheet which accumulates in a Another goa| of this paper concerns a fundamental prob_
core (stripsc in the inset, and the bold line and the shadediem of vortex breakdown. The main difficulty of inviscid
area in the main plot of Fig.)1The core develops due to the theories is that neither the Bernoulli head nor the circulation
roll-up of the vortex sheet, which generates a sWifihe  in 4 vortex breakdown “bubble” can be predicted. Previous
swirl induces a pressure drop toward the axis of rotationgttempts to overcome this indeterminacy have involved con-
thus attracting other streamlines to the axis. This further fojectures(i) that a fluid in the bubble is stagnant(@p that the
cuses the swirl and the longitudinal momentum in the corepead and circulation inside the bubble are analytical continu-
thus generating a strong swirling jet. ations of those outside. Here we examine whether these con-
Figure 1 also schematically shows the dependence of thRctures are valid for swirling jets by studying the features of
longitudinal velocity (J. scaled by the free stream velocity \iscous solutions, as viscosity tends to zero.
U..) and pressurer(; scaled by the atmospheric pressprg Both for applications and for fundamental aspects of the
on the distance from the wing tifs scaled by its length over proplem, similarity solutions are helpful, because they re-
the wing along the core. The velocity increases and the presgce the problem to ordinary differential equations, allowing
sure drops in region ljet formation. First, these effects qrastically simpler and parametric analyses. This simplicity
saturate, due tdturbuleny diffusion of vorticity from the . gmes at a price: the solutions can model only certain re-
core, and thetJ ;. decreases ang; rises in region liforma-  gions of practical flows, e.g., away from boundaries and
tion of annular jet; see belowThe flow reversesi.e., Uc  gagnation points. Despite this limitation, similarity solutions
<0) in region Il (vortex breakdown “bubble), and, fi- 516w wide parametric analyses and, thus, describe many
flows, show common features, and illuminate their physical
dElectronic mail: mece21w@jetson.uh.edu reasons. For example, conical solutidméere the velocity
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FIG. 1. Schematic of distribution of the longitudinal velocitgurve

U./U..) and pressurécurve p./p..) along the vortex coréc in inset, and

the bold line and the shaded region in the main)ptoer a delta wing. The

core develops into a swirling jet in region I, the jet is annular in region Il, F|G. 2. Schematic of the problem: the meridional sections of typical stream

region Il is a vortex breakdown bubble, and region IV is a vortex wake. gyrfaces(curves 1 and Rand separating surfac® (the subscripts indicate
values ofn).

is inversely proportional to the distance from the orjgie-
veal the development of flow reversal, the nonuniqueness of
flow states, and hysteretic transitichs® flow cells separated by a surface of revolution, which is coni-
Long’ was the first to study conical swirling jets in the cal atn=1 (line S;). CurvesS,-; andS,.; show the me-
boundary layer approximation and to find a fold catastrophetidional section(¢=cons} of this separating surfadéound-
two solutions exist foM >M ;= 3.74, one solution exists for ary of the recirculatory zone€or then>1 andn<1 cases,
M=M;, and no solution exists foM <M;; M is the flow  respectively.
force divided by the square of the circulation a¥id is the Since thev~1/z" solutions are singular a@=0 for n
value of M at the fold. Burggraf and Fosteinterpreted this >0, they cannot model a realistic flow in the vicinity of a
feature in terms of vortex breakdown and related it to abrupstagnation point, say, inside a sphere of rad®sn Fig. 2.
transitions between flow states observed in tornadoes. Nevertheless, the solutions provide satisfactory local ap-
The mechanism of abrupt transitions was explained usproximations of realistic flows both upstream and down-
ing conical solutions of the full Navier—Stokes equatiBihs.  stream of the stagnation point. For example, upstream of the
particular, flow reversal was found to occur even in a creepvortex breakdown position above a delta wing, the vortex-
ing flow, while hysteresis appears through a cusp catastrophmore flow is a strong swirling jet, with its maximum longitu-
as Reynolds number Re exceeds some threshold value. Thiinal velocity five times the free stream veloctyThe v
value is sufficiently large for the asymptotic approdch.,  ~1/z" one-cell solutions witm>1 can approximate the vi-
Re—) to be applicable. This limiting case allows analytical cinity of vortex core where the flow accelerates from the
solutions which reveal reasons for fold bifurcation and hys-{ree-stream to maximum velocitysee Sec. VII.. Down-
teresis. stream of vortex breakdown, two-cell solutions witle 1
An advantage of the asymptotic approach is that the Eulocally approximate bubblelike and conical recirculatory
ler and boundary layer equations admit a more general fangones. Two-cell solutions with<<1 help model the outflow
ily of similarity solutions than do the Navier—Stokes equa-of vortex suction devices where a concave surface separates
tions. The study of swirling flows in the boundary layer flow cells®
approximation has a long histotyHall*® treated vortex Comparison of these solutions with experimgand
breakdown as a failure of the quasicylindri¢a¢., boundary  with other models and better understanding of swirling
layen approach for near-axis flows—the effect being similarflows require that relevant control parameters be ussds
to that in flow separation from a wall. However, away from known, proper scaling can cause data to collapdere we
stagnation pointsself-similar boundary layer solutions can argue that the swirl numbe3w is the proper parameter for
describe flow reversal as found by Ldnfpr the v~1/z  swirling jets and, especially, for the~1/z" solutions.
flows; z is the distance from the jet origin. Long’s parameterM is suitable for then=1 jets only.
Fernandez-Feriat al!! extended the Long jéto thev ~ Fernandez-Feriat al'* use a different parametel, which
~1/z" flows. This significant advancéike the Falkner— is the swirl/longitudinal velocity ratio at the outer edge of the
Skan generalization of the Blasius flpallows the modeling boundary layer. The choice &f is inappropriate.
of a larger number of practical flows in comparison with the  First, L is not applicable fom=1 becausd.(=+2) is
Long solution. Figure 2 shows a schematic of the meridionalndependent oM, and thereforé. fails to specify the flow in
motion for a two-cell swirling flow described by the  this case. Second, it is difficult to precisely locate the outer
~1/z" solutions. The cylindrical coordinates,,z) are  edge of a boundary layer in practical flows. Third, in terms
used here with scaled to blow up the vicinity of the axis of of L, the results look odd: two solutions exist for-L; and
symmetry,z. Curves 1 and 2 are typical streamlines in theno solution exists fot. <L; when 1<n<2, while two solu-
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FIG. 3. Typical profiles of the axial, and swirlv , velocities at a fixed.

tions exist forL<<L; and no solution exists fdc>L; when
0<n<1 (folds, which Fernandez-Feret all! interpreted as
vortex breakdown

We propose another characteristiswirl number Sw

=V gym/Uzm, Wherev,, andv 4, are maximal values of the

longitudinal and swirl velocities at a fixexd(Fig. 3). Similar

Shtern, Hussain, and Herrada

a(rv)lar+a(rv,)9z=0, pI'?lré=aplor,

v, dl1or +v,dT 1 9z=vralar (r ~ LT/ or), 1)
v, 00,191 +v,0v,19z=—p~tapldz+ vr ~La(rdv,lar)lr,
admit the similarity solutions,

v,=2vz8 %f'(&), T=2Y2z5 1y(¢),

v,=vr Y(2&f'/m—f), m=2-n,

D=p.+p(v2)26B(8), £=(rI5), &
5= 21/2Z rnl/m(roosz l/ V)fllm_

HerelI'=ruv,, p is the densityy is the kinematic viscosity,
(vr,vg4,v,) are the velocity componentsi~z*™ is the
boundary layer thickness, the prime denotes differentiation
with respect tog, I'..z" /v is a kind of Reynolds number,
andT',, is a dimensional constant. In the particular case
=m=1, I',, is a circulation value far away from the axis:
I'-T, as &—o. The dimensionless functiong, y, andf
replace pressung, circulationI’, and the Stokes stream func-
tion ¥ =wpzf, respectively.

Substituting (2) in (1) yields the ordinary differential
equations

to M andL, Swis a flow parameter independentoénd of £28' = 42
viscosity v. However in contrast td andL, Swis relevant
for the entirev~1/z" family. Other significant advantages 2£y"=(1—1/m)yf’' —fy’, 3

are that(i) Sw can be easily extracted from experimental
data, unlikeM andL, and(ii) Swis a convenient parameter

for local comparison of the~ 1/z" solutions with nonsimilar
flows (whereSw depends orz).

The goal of this paper is to show that the 1/z" flows
have featuresommonfor any n in terms ofSw. These fea-

tures are(a) sharp minimum of the pressure coefficient at
nearly the same value &w, (b) similar twofold dependence
of the solutions orsw, (c) different flow patterns on the fold
branches, andd) the development of a potential swirl-free

flow in the separation zone. Note that feat(g contradicts

2(&f") +(2im—1)f "2+ ff"+(2m) "t

X[(2—m)B+¥?1£]=0.

Note thaty here, in contrast tog = (2/£)Y2y(£) used by
Fernandez-Feriat al,!! is an analytical function of; this
feature ofy eases calculations because both the equat®)ns
and the boundary conditionglescribed beloyvare simpler
than those in Ref. 11.

B. Boundary conditions

the analytical continuation and stagnation-zone conjectures The requirement that the viscous terms(8) become
used in inviscid theories of vortex breakdovas discussed negligible asé—o yields

in Sec. VII.

To this end, we formulate the problem in Sec. Il, intro-

f—¢m2 and %y’ +(m—1)y—0 asé—w.  (4)

duce suitable parametefSec. IIl), describe new features of The requirement that the velocity is bounded on the axis,
Long’s jet (Sec. IV), show that these features are commoné=0, yields

for then>1 andn<1 jets as wel(Sec. \j, describe how a

potential flow develops in the separation zof&ec. VI,

compare the features of similarity jets with inviscid theories

of vortex breakdownSec. VII) and with experimentSec.
VIII), and summarize our new resu(Sec. 1X).

IIl. PROBLEM FORMULATION

f=0, y=0, and

2f"+(2Im—1)f'2+(2m) " }{(2—-m)B=0 at £=0.
5
In addition, we use the condition
f/(0)="f,, (6)
wheref, is an intermediate free parameter. Equati@)sand

To simplify the analysis, we modify the problem formu- boundary conditiong4)—(6) constitute a closed mathemati-

lation by Fernandez-Feriet al!!

A. Governing equations

The boundary layer equations for a near-axis rotationally

cal problem.

C. Numerical procedure

Depending on parameter values, we use two algorithms

symmetric flow of a viscous incompressible fluid in the cy-to solve the problem numerically. In the first algorithm, in-

lindrical coordinatesf, ¢,z),°

tegration starts fromé=0 with conditions(5) and (6) and
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guessed values @#(0) and y'(0). Resolving the 0/0 indeter- andp,, are pressure values both on, and far away from, the
minacies in(3) yields the highest derivatives &0, as fol-  axis, whilee,, is the maximum of the local kinetic energy,
lows: e=pv?/2, at a fixedz Therefore,C, estimates the pressure

Fr=[(1—ahm)f £ — (2m) " [(2—m) 8’ +y'2]]/4 drop per unit dynamic head. In addition, we uSg=(p,

' — pw+pu§1/2)/em to evaluate the hydraulic head on the axis.

B'=y'2 and y'=—-1/(2m)y'f'. Althoughp,—p.., €y, andv, are functions of, C, andCy
arez independent and therefo®, andCy; are global char-
acteristics of thev~1/z" flows. These parameters can be
calculated for nonsimilar flowge.g., for swirling flows
above delta wings, in tubes, and in vortex champasswell
and, in addition, these parameters can be easily measured
experimentally. In nonsimilar flows, however,, Sw, C,,,
andCy vary with z, in contrast to the similarity jets studied
here.

The integration runs frong=0 to ¢é=¢; (typically we take
&=10%, and theny'(0) and 3(0) are adjustedwith the help
of the Newton shooting procedyrto satisfy(4) at é=¢;.

The second algorithm is for two-cell flows where the
inter-cell boundary¢= &, is far from the axis £1). In
this case, we integrat@) from &= & in both directions, to
&=0 and toé=¢;, usingf(&) =0, f'(&)="f,, and guessed
values off”, B, v, andy’ at é=¢£,. Then the guessed values
are adjusted to satisfi#) (at £=&;) and(5).

After solving the problem, we calculate the parametergy. NEW FEATURES OF THE LONG JET
described below, which characterize important kinematic and

dynamic features of swirling jets. It is instructive first to reconsider the=1 solutions in

terms of the new parameters. Figure 4 shows that the depen-
dence ofV,, C,, and Cy on Sw is twofold. The curve
V,(Sw) has three characteristic points. Along the upper
To compare then>1, n=1, andn<1 solutions(whose branchesV,=1 for small Sw. This corresponds to a con-
features were found by Fernandez-Feeinall® to differ  solidated jet with the maximum,,,, located on the axis of
markedly in terms ot), we introduce new flow characteris- symmetry(e.g., see Fig. 13 Such a velocity distribution is
tics. Fortunately, swirling jets allow suitable common param-typical of swirling flows well upstream of vortex
eters based on their similar features in velocity and pressurereakdown'?
distributions. An important characteristic is the swirl number  As Swincreases beyond some threshold value, the maxi-
SW=v ym/v,m (introduced in Sec.)lwhich we use as aon- ~ mum of v, moves away from the axis; there is now a local
trol parameter. Recall that,, is the maximum swirl veloc- minimumof v, (Fig. 5. Thus,V, becomes less than 1, e.g.,
ity at z=const(Fig. 3); the maximum location indicates a while passing pointA as Sw increases along the upper
boundary of the vortex core of the swirling motion in the branch of curveV,(Sw) in Fig. 4b); symbol A denotes the
consolidated jets. Th&w value shows the strength of the transformation of a consolidated jéwvhereV,=1) into an
swirl compared with the meridional motion within the jet. annular jet (whereV,<1). Annular jets occur upstreaf,
Since the maximum longitudinal velocity atconst is not downstreant? and betweel? vortex breakdown bubbles.

IIl. COMMON PARAMETERS OF SWIRLING JETS

necessarily located at=0, one usefulesultantcharacteris- Moving further along curve/,(Sw) in Fig. 4, we en-
tic is V,=v,/v,m, Wherev, is the velocity on the axis counter a qualitative change in flow pattern whep be-
(Fig. 3. comes negativée.g., see the, profile in Fig. 8. The flow

Both V, and Sw describe only the flow kinematics; we reverses near the axis and becomes two-cellf#ay. 2). The
also apply the pressure coefficie@t, to characterize the flow reversal occurs at poirfgin Fig. 4(b); symbolSdenotes
flow dynamics. A strong drop in pressure is typical of swirl- flow separationfrom the axis.
ing jets and contributes to the vortex lift of delta wings and ~ On the curves in Fig. @), Sw reaches its maximum
to the refrigeratingRanqué effect in vortex tubes. Here this Sw;=0.661 at thefolds e.g., at poinF whereV,=0.447 on
important feature is accounted for Bp=(pa—P=.)/€n; Pa  CUrveVy(Sw). If Swincreases beyond its fold valugw,
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(@yn =05 @®yn=1 @n=1.1 yields a decrease ip..—p,, and thus agailC,—0 asSw
1;/ v, '] B raea —0. ThereforeC,, reaches it§negative minimum at a cer-

vy

05 ] tain Sw (which appears to be very close $w).
/\% 051 Y 05 1 Yo It is interesting thatCy also tends to zero along the
y [ ] ! ] /k lower branch of curv&/,, even more rapidly than do&, .
H 0] 0 A reason is that the flow becomes irrotational inside the near
] ] ] axis cell(see Sec. Jlwhere the head is constant and equal
REIVA: asf /P sy [ p to its ambient value, i.eCy=0. We show in Sec. V that a
] ] ] similar effect occurs in the+1 flows as well.
1.5 Frrrrrerre 7 A— A ¥ It is important to know what flow pattern corresponds to
b DB ® e s 0 00 s s 2 the C, minimum. Figure 5 shows the velocity components,
v, andv,, pressure, and headd =p— p..+ pv?/2 as func-
FIG. 5. Profiles of velocities, andv,,, pressurep, and heacH, corre-  tions of n=¢&Y2=r/6 (which is a scaled polar anglat a
sponding to theC;, minimum in Fig. 4. fixed z. Herev, andv 4 are normalized by ,,, while p and
H are normalized bye,,, all of which served to make the
curves in Fig. & independent. It is interesting that at t6g
the flow abruptly transforms into a very different state minimum,v,, v,, andH have their maxima at nearly the
(which differs from the near-axis jet and therefore requiressame distance from the axis.
another approach, see Refs. 8 andl. 16 Near the axis, the pressure drop exceeds the kinetic en-
On the lower branch of curv¥,(Sw), V, reaches its ergy providing the negative total heétifor small 7. As one
minimum at pointM in Fig. 4(b), where the reversed flow is moves away from the axis, the pressure drop decreases while
the strongest. ASw—0 along the lower branchy, also the kinetic energy increases, causing tHegrowth and
tends to zero approaching the asymptete= —Sw shown change in sign. As; further increases, passing teg loca-
by the broken line in Fig. @); this asymptote follows from tion (near thev, maximum in Fig. 3, H decreases. Far away
the analytical solution found in Ref. 8. from the axisH becomes negligibly small compared with its
Note that asSw—0 along the lower branch of curve characteristic values inside the vortex core.
V,(Sw) in Fig. 4(b), the location of they, maximum moves
far away from the axi¢see Sec. Vj| rendering the boundary V. COMPARISON WITH THE n#1 FLOWS
layer approach invalid. The boundary layer approach also

fails to capture other folds and solution branches described Figures 4_and 5 show thaF th.e results for 0.5 (a), n
. . =1 (b), andn=1.1(c) are qualitatively the same. Even nu-
by the full Navier—Stokes equatiofis. : L -
: L merical values of key characteristics are similar. For ex-
Despite these limitations, the boundary layer approach . -
. L ample, the minimum o€ ,= —0.998 occurs asw=0.6495
helps us to reveal a new important feature of near-axis jets—

. i : ~ 7 andV,=0.740 forn=1.1; these numbers are very close to
the existence of th€, minimum, as Fig. 4 shows. In Fig. h forn=1. F ~05 - _
o . ose forn=1. For n=0.5, the minimum ofC 1.378
.4(b)’ _the minimum opr(:_—1.027) occurs in the annular occurs atSw=0.649 andV,=0.483. Interestinpgly, th&w
J_et without f'OW reversalFig. 5(b)] at Sw=0.6515 andv,, value corresponding to th&, minimum is nearly invariant,
=0.696, a point located on curwé,(Sw) above the fold. althoughC, andV, vary renp1arkably
The finding of the velocity profiles an&w at which C, Itis ingtructivg to compar€ for. the v~z jets with
reaches its minimum can be utilized to enhance the vorteé for the Rankine vortex awidpely used reference dis¥
lift of delta wings and to achieve the deepest adiabatic cool:l_ﬁe Rankine vortex is ar; exact solution of the Euler edua—
ing in the Ranque tubes. To this end, the flow region CON%ins where the swirl velocity depends only onviz.:
taining theC, minimum should be appropriately enlarged in v
each device—for example, by proper blowing on deltav ,=v 4ml /1
wings, and by shaping the side wall of vortex tubes.
The C, minimum has a clear physical reason. 8sv
—0 along the lower branch of curv, (note that the upper The pressure distribution in the Rankine vortex is
branch of curve/, corresponds to the upper branch of curve
Cu, but to the lower branch of curv€, in Fig. 4), the jet
tends to the Schlichtingswirl-free) jet (this limiting transi-  and
tion is uniform for velocity, but is not uniform for stream
function). Pressure is constant across this jet; more precisely,
Pa— P~ is a small positive quantity proportional to Re  This yields Cp=—2 (SwandV, are not applicable since
This yields thatC,—0 andCy— 1 asSw—0 (see the lower v,=0 in the Rankine vortex

-0.5 ]

for r<sr. andvg=vnlc/r for resr<ee.
P=P.—pvim(1—3r2r2) for r<r,

P=P.—3pv5praIr? for resr<eo.

branch of curveC, and the upper branch of cur@, in Fig. As the Rankine vortex igindependent, it corresponds to
4). In contrastp,— p.. is negative in jets with strong swirl, a n=0 in thev~z"" family of similarity solutions. Our results
consequence of cyclostrophic balance. show that theC, minimum decreases with, and, an—0,

As Sw decreases along the other branch, the maximunC, tends to—2, i.e., to its value for the Rankine vortex.
of v, moves away from the axis and its value decrefdegps,  (However, note that if we scale the pressure dip: p..,
see Figs. 8) and &b)]. Sincepw—pa:fg(pvfﬁ/r)dr, this  using not the total kinetic energs,, but the swirl kinetic
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FIG. 8. Profiles for the two-cell flow afa) n=0.5 andSw=0.203,(b) n
=0.5 andSw=0.117, andc) n=1.1 andSw=0.246.

corresponding pointke.g., as shown in Figs(d) and § and

FIG. 6. Comparison of curve¥,(Sw) for the n values shown near the indicate fold(F), flow separatior{S), and the transition from
curves. consolidated jets to annular jet8). According to the two-

branch curves in Fig. 6, the plane in Fig. 7 is twofold, as the
g arrows illustrate. AsSw increases along the lower arrow
directed upward, the jet is consolidated; inset 1 shows a pro-
ffile of v,(r) at a fixedz. Along the next two arrows, the jet is
annular with apositiveminimum of v, at the axis(inset 2.
Along the last(downward arrow, the flow is two cellular

energy%pvim, then this modified pressure coefficient woul
be nearlySw 2 timesC,.) In practical vortex chambers near
the endwall where a swirling jet develops, a typical value o
the C, minimum,C,,, is close to—1 (which corresponds to

n~1 in the thev~z " family), althoughC,,, depends on i o o
y) gntpm dep andv, has anegativeminimum on the axiginset 3. If Sw

the chamber geometf):? q further. the flow b - rotational the ax
To clearly demonstrate that the swirling jets have com- ecreases lurther, the tlow becomes irrotational near the axis,

mon features fon>1, n=1, andn<1, Fig. 6 gathers the as discussed below in more detail.

V4(Sw) data forn=0.5, 1, and 1.1. The curves are obviously

quite similar. The most significant difference occurs in thevl. DEVELOPMENT OF A POTENTIAL FLOW IN THE
vicinity of Sw=V,=0. Then=1 curve has the linear as- SEPARATION ZONE

ymptote, V,=—Sw, while the derivative of function

V,(Sw) at Sw=0 seems to be zero far<1 and infinite for While it is known that the inviscid flow is swirl-free and

o D otential in the near-axis cell of two-cell flowsee Refs. 8
>1.
n>1. However, the boundary layer approach is invalid in thean 22 fom=1 and Ref. 16 fon=1), we show below how

vicinity of Sw=V,_,=0 (as discussed in Sec. JV . : )
Figure 7 shows the cumulative results on the parametetrhls feature appears dw varies. Figures @ and 8b) de-

S pict the profiles for the lower branch of tlre=0.5 curve in
plane (,Sw). CurvesF, S and A are projections of the Fig. 6 and for(a) Sw=0.203, .= 10 and(b) Sw=0.117,

ns=20; n= 7. is the boundary of the separation zone where
0.7 the stream function is zerd(n;)=0. Comparison of Figs.
ee—— 8(a) and 8b) clearly demonstrates that, 8w decreases)
the width of the separation zone increasgs, v, and H
vanish near the axis, an(ii) v, becomes uniform in the
reversed flow. We do not show tlpedistribution in Fig. &b)
] f 2 because the pressure drop is so sn@jj< —0.023) that the
corresponding curve nearly merges with the zero line. Thus,
the flow becomes irrotational near the axis as the separation
Sw 1 1 zone expands for the<<1 solutions. Figure @) shows the
similar profiles an=1.1, Sw=0.246 (ys=14.3). Againp 4
04 1 A andH vanish whilev, is uniform in the reversed flow.
J It is striking that the reversed flow can remain irrota-
tional even in a very narrow separation zone. We find this
0.3 1 ( 3 Y effect for then>1 solutions. Figure 9 shows the dependence
of the thicknessy, of the separation zone ddw along the
Y lower branch of the/,(Sw) curve forn=1.1[Fig. 4(c)]. As
02 +r——rT—T—TTT—TTTTTT Sw decreasesy first increases up top,=14.37 atSw
0 0.5 1 1.5 =0.24 and then decreases. Figure 10 shows the velocity pro-
files for the solutions with the same,=5 at (a) Sw
FIG. 7. Map of flow states on the parameter plane. =0.515 and(b) Sw=0.158 (see Fig. 9. In the separation

0.6

;\

n
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FIG. 9. Thicknessy, of the near-axis cell versuSwalong the lower branch
of the V,(Sw) curve in Fig. 4c).

zone, the flow is vortical in Fig. X@), but potential in Fig.

10(b) where the jet is very thin and the flow reverses on both
sides of the jet. ASw further decreases, the jet becomes & ow
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FIG. 11. Meridional sectiofig=cons} of stream surfaces for solutidi) at
xs=0.707.

the n>1 inviscid flows: (i) the thickness of the separation
zone is limited to the viscous scdle.g., 7s<15 atn=1.1),

and (ii) the viscous sublayer develops within the near-axis
boundary layer.

It can thus be seen that the tendency for the reversed
to become irrotational occurs for both tine<1 solu-

viscous sublayer of a significantly smaller thickness than thaﬁons and they>1 solutions. For the=1 flows. this effect

of the basic boundary layer; in particular, the distance be
tween thev, zeroes[Fig. 10b)] becomes small compared
with 7. Presumably, this developing singularity @ 0
indicates that the flow becomes nonsimilar.

Thus we have found thaf is limited for n>1, but
grows without a limit forn<1. This agrees with the results
by Fernandez-Feri@t all® that the potential flow of the

O(1) thickness can be matched with an outer vortical flow

only for n=<1. In then>1 case, no boundary layer solution
(from the v~1/z" family) exists which can match these

X r
flows. Here we have revealed two reasons for this feature Q[%v

1@ )
] “
VZ
0.5 05
Yo

| I
0 0 (———
05 Fomm 5 :

0 0o, 2 oo, ™

FIG. 10. Velocity profiles ah=1.1 andy;=5 for (a) Sw=0.515 and(b)
Sw=0.153.
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is well known: it was found first in the Long boundary
laye? and then for solutions of the full Navier—Stokes
equationg To discuss this effect, we address here the par-
ticular entire-domain flow which is relevant in the context of
this paper. To imitate the delta-wing vortex, consider a flow
induced by a half-line vortex of circulation, located at the
negativez axis in an infinite fluid. The vortex singularity
models a consolidated part of the vortex, upstream of vortex
breakdown. The flow downstream can be either consolidated
two cell. As Re=I'y/v—x, the analytical solution for the
o-cell flow is as follows?

=1, ¢=H(1+X)[3xs+1—(3+x)X)/(1+x9)},
== i3+ 1= (1= x)XI/[(L+x5) (1—x7)]

for —1<x<Xq,

and
y=0, ¢=—31-X)[(1+x9)/(1-x¢)]",
q=—H1+x)(1—xg) H1—x)"1 for xg<x<1. @)
Here, y=TITy, ¢=W/(rs;l0), X=2rg,, rep=(r?

+27%)12 andx=x, is a conical surface separating the cells.
Figure 11 shows streamlines of the meridional motion at the
separating angl®.=45° (x;=cos#,). The near-axis cell in
Fig. 11 resembles the conical breakdown observed by
Sarpkay&® (for n#1, the separating surfacis curved, as
shown in Fig. 2. Solution(7) explicitly demonstrates that in
the separation zonex{<x=<1), the swirl is absent and the
meridional motion is potential. Fernandez-Feréa al®
proved that the flow must be potential in the near-axis cell of
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2 These features agree with our results concerning both the
| entire-domain flows abh=1 and the near-axis jets of amy
(Sec. V).

T H Thus, the inviscid limit reveals th&t) H(W) andl"4(\V)
= have jumps at the boundary of separation zone—which con-
| l tradicts the analytical-continuation conjectuk@) swirl is
absent in the separation zone—which seems to agree with
1 °/° o P the stagnation-zone model; afiii) the meridional motion in

the separation zone is irrotational and is of the same magni-

tude as the outside the separation zone—wltichtradicts

the stagnation-zone model.

1 The fact that the stagnation model is invalid for the
~1/z" flows does not necessarily mean that this model can-
not be applied in other cases. For swirling flows in pipes,

there are theoretical arguments® as well as experimental

-] «—RZ— 0 1 evidence, in favor of the stagnation model. Note that the
/) separation zones in the~1/z" flows are semi-infinite do-
mains which expand downstream and have jet-like flows at

FIG. 12. Typical dependence of hekdand circulation” on stream func-  the hoyndaries. These solutions do not capture the vortex-

tion ¥ for the v~ 1/z" flows inside(¥<0) and outsidg¥>0) recirculation o " S . . . .

breakdown “bubbles” and semi-infinite cylindrical domains

zone R typical of pipe flows. Therefore, although our results defi-
nitely reveal a limitation of the stagnation and analytical-
continuation models(namely, their invalidity for thev
two-cell solutions of the Euler equations for thet1 flows  ~1/z" flows), these models could nonetheless be useful for
as well. Thus, this feature is valid not only for the near-axisother flows.
boundary layer¢as shown in this sectigrbut also for full- The inviscid models, however, fail to explain one impor-
domain flows. Now we compare this fact with the conjec-tant effect—the strong flow acceleration upstream of vortex
tures used in inviscid theories of vortex breakdown. breakdown and the formation of swirling jets within vortex
cores above delta wings and in slightly diverging pipes. In
contrast, thev~1/z" solutions capture this feature, as shown
VIl. COMPARISON WITH CONJECTURES MADE IN in Sec. VIII, where we compare the theoretical and experi-
INVISCID THEORIES mental velocity distributions in the consolidated vortex core.

The steady Euler equations for axisymmetric incom-
pressible flows can be reduced to the form,

ralor(r~1ow/or)+ o?*¥9z>=r?dH/d¥ — T dI'/d ¥,

VIIl. COMPARISON WITH EXPERIMENT

Earnshaw measuremefftsof the velocity distribution
above delta wings clearly demonstrate that the cores of
which is often referred as the Bragg—Hawthorne or Squire-feading-edge vortices are swirling jets. Upstream of vortex
Long equation(although it was used significantly earlier by breakdown, the profile of the longitudinal velocity across the
Meisset?). FunctionsH(¥) andI'(¥) are defined by inflow core peaks sharply, and the maximum velocity is nearly three
boundary conditions outside, but are undetermined inside, imes the free stream velocity. Menke and Gufsabnfirm
separation zone. Some inviscid theories of vortex breakdowthis observation and also state that the maximum can be even
involve conjectures thaf) H(W) andI'(¥) can be analyti- as high as five times the free stream velocity. Sarpkaya and
cally continued”?® or (ii) fluid stagnate$*°?°in the sepa- Novalk® find a similar effect for a swirling flow in a diverg-
ration zone. ing pipe: the maximum of the longitudinal velocity in a vor-

Both of these conjecture§,) and(ii), appear invalid for tex core is 3.5 times the velocity far from the core.
the swirling flows considered here. In particular, the analyti-  Such strong flow acceleration in vortex cores occurs due
cal solution(7) yields thatl’=H=0 inside the separation to the self-focusing mechanism: the swirl induces a pressure
zone k,<x<1, where¥<0), while I'=I"y=const andH drop near the axis, thus attracting other streamlines and in-
= %pl“é\l"z outside the separation zonex<{x;, where creasing ,, and flow convergence further focuses the swirl.
P>0) as Re~x. Figure 12 illustrates this result, presenting This positive feedback causes a vortex-sink-type accumula-
H/p.(H=H+p.) andT'/T', versusW¥ inside (¥<0) and tion of axial and angular momenta near the aXid\s the
outside(¥>0) the recirculatory zon¢RZ). radial gradients ob, andv , increase, strongurbulen} dif-

The flow does not stagnate inside the separation zondusion develops and finally balances the accumulation. The
althoughI’=H=0 there. The inviscid solutions are singular saturated value of, depends on effective viscosity: v,
at the surface separating the cells, and there is a boundarircreases as, decreases. Since turbulen@ad v,) typically
layer solution smoothing this singularity. The-z™" flow is  diminishes in an accelerating flow, the cumulative effect can
vortical outside the separation zone, where=3K,(m be very strong; this explains the high velocity peaks ob-
—2) 12 4M gnd =KW1~ YM K, andK are constant®  served in experiments.
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~1/z" jets in the context of experimental observations. For
example, in the Sarpkaya and Novak experinféngw
=0.54 atz/D=1.8 (upstream of vortex breakdowrand
Sw=0.18 atz/D=4 (downstream of vortex breakdowm
the same flow. These data give a quantitative estimate of
how the flow separation affects tiSw value. Above a delta
wing, a local value ofSw first increasegtogether with cir-
culation downstream of the wing tip, but then drops as vor-
tex breakdown develops. Therefore, two different local flow
statequpstream and downstream of vortex breakdphave
the same value dbw. Thus, the twofold dependence &iv
has clear physical reasons and agrees with experimental re-
sults.

The rangeSw<0.7 (Fig. 7) is a limitation of thev
_/ ~1/z" solutions, asSw can significantly exceed 1 in some

v/v,

0.5

regions of practical flows. For exampl8w is of O(10) for
T T T T a flow induced by a rotating endwall inside a sealed cylin-
0 1 t/r, 2 drical containef® Also, Swis large near the inlets of vortex
chambers and in the Ranque tubes, where the swirl domi-
FIG. 13. Comparison of the velocity profiles from the experim@ef. 29 nates the axial flow. In contrasGw<1 in the entire flow
(symbols and the theorycurves atn=1.233 andSw=0.543. domain above delta wings, in outflows of vortex chambers
and tubes, and in tornadoes, although swirl is strong in these
o o flows. For example, vortex breakdown in the near field of
Taking into account the jet-like character of the COresyirling jets occurs aBw~0.65—0.7; this experimental re-
upstream of vortex breakdown, we now compare the experig it of Billant et al3 agrees with the fold value @w pre-
mental profiles ofv, andv, with those resulting from the dicted here(curveF in Fig. 7).
v~1/z" solutions. Comparing the laminar theory with a tur-
bulent practical flow, we interpret as the uniform eddy

To summarize: the~ 1/z" solutions provide a satisfac-

. . tollowi hlichti ho did this for th i tory approximation of the velocity distribution in a vortex
viscosity v (following Schlichting who did this for the swirl- .0 “athough these solutions cannot model the entire veloc-

free round jeb. While the theory treats rotationally symmet- ity field of practical flows. Because of this serious limitation

ric flows, vortex cores above delta wings are remarkablyof these similarity solutions, the practical applicability of the

.asym”"!et”“ the maximum on one S'd(.a of fche vortex XIS teature, thaC, has a sharp minimum, needs further theoret-
is 1.5 times the maximum on the opposite side, according a1 and experimental studies

the Menke and Gursul measuremetft§or this reason, we

here compare the theoretical profiles with the quite symmet-

ric data by Sarpkaya and Novak: the symbols in Fig. 13 are

extracted from Fig. @) of their papef® Thesev, and v,

profiles were measured alD=1.8, e, substantially up- IX. CONCLUSIONS

stream of the vortex breakdown locationzab = 2.8 (D be-

ing the pipe inlet diametgr The curves in Fig. 13 are the (1) A common feature of the~z~" jets is the twofold de-

theoretical results ah=1.233 andSw=0.543 (chosen to pendence on swirl numb&w: for anyn, two solutions

better fit experimental dataThe velocitiesv, and v, are exist for Sw<Sw; and no solution exists forSw

normalized by ,, and the radial coordinate is normalized by > SW .

the core radius;, which corresponds to the, maximum.  (2) As Sw decreases along the upper branch, the flow be-
The agreement looks satisfactory inside the core, espe- Ccomes more consolidated near the axis and the role of

cially for swirl velocity. However, the experimental, pro- swirl diminishes.

file is sharper near the axis, compared with the theoreticdl3) As Sw decreases along the lower branch, the flow be-
(laminap profile, as typical for turbulent jefsOne reason is comes two cellular. The role of swirl is crucial for this
that the eddy viscosity is not uniform within the cofthe flow development despite the fact thatv is small.

viscosity maximum is located away from the gxi®©ur pre-  (4) As Sw further decreases, the flow inside the separation
liminary results show that the Prandtl mixing-length model, = zone becomes swirl-free and irrotational.

v;=12dv,/dr, better fits the experiment, similar to the case(5) Neither the analytical continuation nor the stagnation

of the non-swirling jef However such turbulence modeling zone model is valid for these flows.

is outside the scope of this papeAway from the core, the (6) The thickness of the separation zone is bounded in the

experimental and theoretical results diverge. &s. in- boundary layer scale far>1, but can become dd(1)

creasesy, saturates to its ambienbnzerovaluev ,, (see the for n=1.

horizontal line in Fig. 18in the experiment, while in theory, (7) The pressure coefficient has the sharp minimun®at

v, goes to zero as/r.—oo. ~0.65 in a wide range ofi. The corresponding flow is
Consider now the twofold character &w for the v the annular jet without flow reversal.
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