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Analysis of centrifugal convection in rotating pipes
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New exact solutions, obtained for centrifugal convection of a compressible fluid in pipes and
annular pipes, explain axially elongated counterflow and energy separation—poorly understood
phenomena occurring in vortex devices, e.g., hydrocyclones and Ranque tubes. Centrifugal
acceleration~which can be up to 106 times gravity in practical vortex tubes!, combined with an axial
gradient of temperature~even small!, induces an intense flow from the cold end to the hot end along
the pipe wall and a backflow near the axis. To account for large density variations in vortex devices,
we use the axial temperature gradient as a small parameter instead of the Boussinesq approximation.
For weak pipe rotation, the swirl is of solid-body type and solutions are compact:vz /vza51
24y213y4 and (T2Tw)/(Ta2Tw)5(12y2)3; where y5r /r w , the subscriptsw and a denote
values of axial velocityvz , temperatureT, and radial distancer, at the wall and on the axis. The
axial gradient of pressure, being proportional to 3y221, has opposite directions near the wall,y
51, and near the axis,y50; this explains the counterflow. With increasing pipe rotation, the flow
starts to converge to the axis. This causes important new effects:~i! the density and swirl velocity
maxima occur away from the wall~vortex core formation!, ~ii ! the temperature near the axis
becomes lower than near the wall~the Ranque effect!, ~iii ! the axial gradient of temperature drops
from the wall to the axis, and~iv! the total axial heat flux~Nu! reaches its maximum Numax

'4000 and then decreases as swirl increases. These features can be exploited for the development
of a micro-heat-exchanger, e.g., for cooling computer chips. ©2001 American Institute of Physics.
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I. INTRODUCTION

We study the flow of a compressible fluid in rotatin
pipes in the hope of developing innovative heat exchang
Radial acceleration due to rotation and an axial tempera
gradient induce an axially elongated circulatory flow. Flu
moves along the temperature gradient near the wall and b
near the axis of a pipe~or near the inner wall of an annulus
Fig. 1!. Therefore, such a counterflow transports the coo
fluid ~from the cold end! along the wall and transports th
heated fluid~from the hot end! along the axis. This centrifu
gal convection can provide efficient heat transfer between
hot and cold ends and, in addition, can protect the pipe s
wall against overheating.

To understand the flow direction, consider the press
distribution induced by the combined effect of centrifug
force and heating. The centrifugal force causes a radial
crease in pressure, and the imposed axial gradient of t
perature makes this increasez dependent. That is, due to th
density difference between the cold and hot ends, the ra
increase in pressure near the cold end,pwc2pac , is larger
than the increase,pwh2pah , near the hot end~Figs. 1 and
11!. Therefore, there is an axial gradient of pressure, whic
parallel to the temperature gradient near the axis (pah

.pac) and antiparallel along the outer wall (pwc.pwh).
Driven by such a pressure distribution, the counterflow c
have a large axial extent. For example, counterflow ex

a!Electronic mail: mece21w@jetson.uh.edu
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over a hundred diameters in vortex tubes. The counterfl
occurs despite turbulent mixing at Reynolds numbers
ceeding 105 in these devices! This counterflow can signi
cantly enhance heat transfer between the hot and
ends—an effect important for heat exchangers.

While similar counterflows emerge in thermogravit
tional convection as well, centrifugal acceleration can inte
sify fluid motion. This swirling flow can be stable for rathe
large Reynolds numbers due to~i! the Taylor–Proudman
constraint, and~ii ! centrifugal density stratification. Thes
two features—flow intensification and stabilization—are
vorable for the development of efficient heat exchangers

Thermal convection in rotating systems has been ex
sively studied for astrophysical and geophysical applicatio
e.g., for large-scale circulation in the Earth’s atmosph
caused by the temperature difference between equatoria
polar regions. Barcilon and Pedlosky1 and Homsy and
Hudson2 investigated centrifugally generated convection in
rapidly rotating cylinder using the boundary-layer appro
mation for lI < O(1); lI[ l /r w , where 2l andr w are the cyl-
inder height and radius. Hart3 ~2000! reviewed and studied in
detail the caselI!1, which is relevant for the Earth’s pola
regions. Busse4 and co-workers~see Ref. 5 for a review!
considered convection in a rotating cylindrical annulus s
jected to aradial temperature gradient, a case relevant to
equatorial regions. For planets and stars, the centrifuga
gravity acceleration ratio,gc /g, is small, whereas in vortex
tubes,gc /g is very large~e.g., 106!, as is l. Here, we con-
sider smallaxial temperature gradients and largegc /g and l
6 © 2001 American Institute of Physics
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2297Phys. Fluids, Vol. 13, No. 8, August 2001 Analysis of centrifugal convection in rotating pipes
for the idealized problem of convection in rotating pipes.
For generality and comparison with known results,

also consider annular pipes. The problem of centrifugal c
vection in a narrow-gap annulus is closely related to
problem of thermogravitational convection in a horizon
layer subjected to a horizontal temperature gradient. Biri6

obtained an analytical solution for this planar counterflo
which agrees well with experiment.7 It is interesting that the
experiment7 reveals no instability even for Rayleigh numbe
Ra.104, although theory8 predicts that the Birikh flow be-
comes unstable to longitudinal-vortex disturbances for
.103.

While buoyancy flows typically remain laminar for R
,104, heat transfer due to convection is a few orders
magnitude greater than that due to conduction at Ra5104.
As gc becomes large, even a small temperature differe
leads to intense heat transfer by centrifugal convection.
estimate thatgc /g>104 in centrifugal heat exchangers an
therefore neglect gravity in this paper. This large accelera
makes the flow very intense even for a small axial tempe
ture gradient~typical for devices with large length/radius ra
tios!. This justifies our approach, where the dimensionl
axial gradient of temperature serves as a small paramet

Since the Boussinesq approximation is not valid
large density variations~typical of vortex tubes!, we use a
different approach: power expansion with respect toe
[ lI21DT/TR . Here 2DT[Th2Tc ~Fig. 1! is the temperature
difference between the hot and cold ends, andTR[(Th

1Tc)/2 is the reference temperature. For large aspect ratilI ,
e is small even whenDT/TR is of O(1).

In addition toe, another important control parameter
the swirl Reynolds number Res5vrw

2/n; wherev is the an-
gular velocity of the outer wall~Fig. 1! and n is the kine-

FIG. 1. Schematic of a centrifugal heat exchanger. An annular conta
filled with a gas rotates around its axis with angular velocityv. The axial
gradient of temperature and centrifugal accelerationgc induce thermal con-
vection ~dashed curves! which intensifies the heat transfer between the
(z52 l ) and cold (z5 l ) ends.
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matic viscosity. These parameters,e and Res, characterize
the axial temperature gradient and rotation—two factors t
together drive the centrifugal convection. As we will sho
the axial velocity is proportional toe Res, the induced radial
temperature gradient is proportional toe2 Res

2, and the radial
velocity is proportional toe2 Res ~important nonparallel ef-
fect for rapid rotation!.

First, we considere so small thate Res!1 even at large
Res. In this case, the equation for the axial velocity becom
linear and decoupled from the equation for the radial dis
bution of temperature. This allows us to obtain solutions
polynomial forms. In the limiting case of the gap betwe
cylinders tending to zero, our analytical solutions coinci
with those for the horizontal layer subjected to a horizon
temperature gradient in the gravity field, obtained by Birik6

and by Kirdyashkin7 under the Boussinesq approximatio
This agreement shows, in particular, that our approach
quite consistent with the Boussinesq approximation for sm
e Res.

Next, we consider moderate rotation, wheree!1 but
e Res is of O(1). In this case, the radial variations of tem
perature contribute to the pressure distribution; therefore,
Boussinesq approximation is not applicable. The equati
for velocity and temperature become coupled and nonlin
therefore, in this case, we obtain solutions numerically.

Finally, we consider rapid rotation,e Res@1, where a
weak, O(e), deviation from parallel flow occurs, which i
also a non-Boussinesq effect. The flow converges to the
causing that~i! the density reaches its maximum away fro
the wall; ~ii ! in addition to the core with solid-body rotation
an outer region appears where swirl is nearly potential;
~iii ! the axial gradient of temperature drops from the wall
the axis.

Thus, new features of our problem are:~a! intense axial
counterflow due to largegc /g, ~ii ! high density gradients due
to swirl, and ~iii ! flow convergence to the axis. These a
essential features for centrifugal heat exchangers.

In the remainder of the paper we introduce the govern
equations~Sec. II!, obtain solutions for weak rotation~Sec.
III !, consider effects of end walls~Sec. IV!, rapid rotation
~Sec. V!, and the radial velocity~Sec. VI!, and discuss the
results~Sec. VII!.

II. REDUCTION OF THE GOVERNING EQUATIONS

We start with the equations governing steady flows o
viscous compressible fluid,

¹"~rv!50, r~v"¹!v5mDv2“p1~m/3!“~¹v!,
~1!

rcp~v"¹!T5kDT1~v"¹!p, p5rRT.

Here v is the velocity vector;r, p, andT are density, pres-
sure, and temperature;m and k are viscosity and therma
conductivity;cp is the specific heat at constant pressure; a
R is the gas constant. The contribution of viscous dissipat
in the energy equation is neglected.

We use cylindrical coordinates$r ,f,z% and consider
flow between two coaxial cylinders under the following co
ditions: ~i! the flow is axisymmetric,]/]f50, ~ii ! m andk
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2298 Phys. Fluids, Vol. 13, No. 8, August 2001 Shtern, Zimin, and Hussain
are constant, and~iii ! the radial velocity is zero,v r50 ~this
condition will be omitted in Secs. IV and VI!. Then Eq.~1!
reduces to

]~rvz!/]z50, ~2a!

rvf
2 /r 5]~p22/3m]vz!]r , ~2b!

rvz]vf /]z5m~]2vf /]r 21r 21]vf /]r 2vf /r 2

1]2vf /]z2!, ~2c!

rvz]vz /]z52]/]z~p22/3m]vz /]z!1m~]2vz /]r 2

1r 21]vz /]r 1]2vz /]z2!, ~2d!

rvzcp]T/]z5vz]p/]z22/3m~]vz /]z!21k~]2T/]r 2

1r 21]T/]r 1]2T/]z2!, ~2e!

p5rRT. ~2f!

We will study those solutions of~2! which model flows
in centrifugal heat exchangers and start with the case
small temperature gradients~Sec. III!.

III. CENTRIFUGAL CONVECTION

A. Axial flow at small temperature gradients and
weak swirl

1. Isothermal density stratification caused by rotation

First, consider az-independent solution for a swirling
flow with vz50 in the gap,r i<r<r w , between two cylin-
ders. In this case, Eq.~2c! yields a solution for swirl that is a
superposition of solid-body and potential-vortex flows,

vf5vr 1G/r , ~3!

wherev andG are integration constants which are specifi
by the imposed rotational velocities of the cylinders.

The general solution of~2e! is T5TR1C ln r, whereTR

~reference temperature! and C are constant. Here we putC
50, i.e., we consider the temperature at the cylinder wall
be equal. Then,~2f! yields

p0~r !5RTRr0~r !, ~4a!

where the subscript ‘‘0’’ denotes the leading term in a sm
parameter expansion~see the following!.

Upon substituting~3! and~4a! in ~2b! and integrating we
get

r0~r !5r0i exp@ I ~r !#, ~4b!

wherer0i is the density at the inner cylinder, and the integ

I ~r !5E vf
2 /~RTRr !dr ~4c!

runs from r i to r. Solution ~4b! gives density stratification
due to swirl used below.

2. Counterflow induced by axial gradient of
temperature

Next, we impose the following axial temperature gra
ent at the walls:

T5TR~12ez/r w!. ~5!
Downloaded 14 Apr 2006 to 129.7.158.43. Redistribution subject to AIP
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When vz50, ~2e! implies that~5! is valid for all r as well.
For a cylindrical container ~Fig. 1!, e5 1

2(r w / l )(Th

2Tc)/TR and TR5(Th1Tc)/2. A clear limitation for~5! is
that ez/r w must be smaller than 1, so thate,r w / l . When
r w / l !1, e is small even for12(Th2Tc)/TR close to 1. There-
fore, we can usee as a small parameter in the followin
expansion.

The axial temperature gradient induces an axial flow i
rotating pipe. This occurs because the radial difference
pressure,pw2pa , is smaller near the hot end~where fluid
has small density! than near the cold end~where fluid has
large density!; here, the subscriptsw anda denote values a
the wall and at the axis. Accordingly,pwc.pwh and pac

,pah ; here, the subscriptsc andh denote the cold and ho
ends ~Fig. 1!. These opposite axial gradients of pressu
drive a flow from the cold end to the hot end along the w
and a reversed flow near the axis.

Deducing the governing equation for axial flow from~2!,
we first note that~2a! implies that the productrvz depends
only on r. Using the expansion,

r5r0~r !1O~e!, vz5evz11O~e2!,

we see thatvz1 also depends only onr. Then~2d! yields for
the O(e) terms,

]p/]z5em~d2vz1 /dr21r 21dvz1 /dr !, ~6!

i.e., p has a contribution which is a linear function ofz:

p5p0~r !2ez/r wp1~r !1O~e2!. ~7!

Now using ~2f!, ~4a!, ~5!, and~7! we get

r5r0~r !1ez/r wr1~r !1O~e2! ~8!

and

p1~r !5RTR@r0~r !2r1~r !#. ~9!

Since]vz /]z is of O(e2), we find from theO(e) terms
in ~2b! that

dr1 /dr2r1vf
2 /~RTRr !5dr0 /dr.

Substituting~4b! and integrating we get

r15~r1i1r0i I !expI , ~10!

whence, with the help of~9!, we obtain

p15RTR~r0i2r1i2r0i I !expI . ~11!

Herer1i is a constant of integration to be determined.
Finally, use of~7! and ~11! transforms~6! into the fol-

lowing form:

d2vz1 /dr21r 21dvz1 /dr5~ I 2c!expI r0iRTR /~mr w!,
~12!

wherec512r1i /r0i .
The no-slip conditions at the cylinder walls,

vz1~r w!50, ~13!

vz1~r i !50, ~14!

make the problem~12!–~14a! mathematically closed. Ther
is also the additional integral condition that the mass fl
rate through any cross section,z5const, is zero,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2299Phys. Fluids, Vol. 13, No. 8, August 2001 Analysis of centrifugal convection in rotating pipes
E r0~r !vz1~r !r dr 50, ~15!

where the integration runs fromr i to r w . This condition
determines the parameterc.

In the case of a~nonannular! pipe, wherer i50, the axi-
symmetry condition,

dvz1 /dr~0!50, ~148!

replaces~14!.
A dimensionless form of~12! is

~yW8!85y~ I 2c!expI . ~16!

HereW5vz1(r0iRTRr w /m)21,

I 5E
a

y

b~v2/y!dy, ~17!

a5r i /r w , b5v2r w
2 /(RTR), v5vf /(vr w), and the prime

denotes differentiation with respect toy5r /r w . SincegRTR

is the squared sonic velocity~g being the specific heat ratio!
andvr w is the maximum rotation velocity, parameterb is a
modified Mach number for the swirl.

Now we consider a few particular cases where~16! has
analytical solutions. We start with the narrow-gap ca
where it is possible to compare the results with those for
planar flow.6

B. Narrow-gap flow

Consider the limiting case where~i! both cylinders rotate
with the same angular velocity~i.e., G50!, and~ii ! the gap
between the cylinders is small compared with the radius
the outer cylinder, 2d[r w2r i!r w . Then,v andy are both
very close to 1, so that we can substitutev2/y51 in ~17! as
d/r w→0; this substitution yieldsI 5b(y2a).

It is convenient to introduce a scaled coordinatex which
is O(1) in the gap:

x5~y2a!/D21, D5~12a!/25d/r w .

Since I 5b(11x)D tends to zero asa→1, we take expI
51. In this case,~16! reduces to

d2W/dx25@b~11x!D2c#2.

Integrating under conditions~13! and ~14! and choosingc
5bD, we find that

W5~x32x!bD3/6. ~18a!

For comparison with the planar flow, we introduce t
Reynolds number, Re5r0i vzmd/m, and the Grashof numbe
Gr5egcd

4r0i
2 /(m2r w), wherevzm is the maximal axial ve-

locity, the length scaled5(r w2r i)/2, andgc5v2r w is the
maximum centrifugal acceleration. Then~18a! yields

Re5Gr/A243. ~18b!

Formulas~18a! and ~18b! coincide with those found by
Birikh6 for a fluid flow between horizontal plates induced
a horizontal gradient of temperature and subjected to o
gravity ~i.e., no centrifugal effect!. This coincidence is no
surprising because~i! centrifugal acceleration is nearly un
form ~as is the gravitational acceleration in the Birikh pro
Downloaded 14 Apr 2006 to 129.7.158.43. Redistribution subject to AIP
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lem!, ~ii ! density is also nearly uniform, and~iii ! the cylinder
curvature is negligible when the gap between cylinders
small compared with the cylinder radius. However, an i
portant difference is that the same temperature gradien
duces significantly stronger~by a factor ofgc /g! flow in our
case~e.g., atvr w5100 m/s andr w50.1 m, gc /g5104!.

C. Finite-gap flow at weak swirl

Analytical solutions in terms of elementary function
also exist for any values ofr i andr w whenb!1. In this case,
replacing expI by 1 in ~16! and integrating we get

W5@~y421!/321 1
2G* y2 ln y2 1

4G* 2 ln2 y#

1C0~12y2!1C1 ln y, ~18c!

where

C15@~12a4!/~32 lna!1 1
2G* a2

2 1
4G* 2 ln a2C0~12a2!/ ln a#,

C05@24G* ~a2G* 1G* 22a2!ln2 a14~12a2!~11a2

1a413G* 16G* 229a2g!ln a23~12a2!2~1

1a2!#/@96~12a2!/~12a21 ln a1a2 ln a!#,

andG* 5G/(vr w
2 ). Figure 2 depicts the profiles ofvz ~nor-

malized by its maximum value! according to~18a! and~18b!
at G* 50. In the finite-gap annulus~a[r i /r w50.5, solid
curve!, the radial extent of the descending flow and its ma
mum velocity are reduced in comparison with those for
narrow gap~a→1, broken curve!.

D. Flow in a pipe

As another example, consider the flow in a rotating pi
i.e., r i50, G50, andv5y. Now, I 5by2/2, and integration
of ~16! yields

W85@12exp~by2/2!#~12c!/~by!1 1
2y exp~by2/2!.

~19a!

FIG. 2. The axial counterflow induced by the axial temperature gradien
a rotating annular pipe forr i /r w50.5 ~solid curve! and r i /r w→1 ~broken
curve!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. The radial distribution of axial velocityvz and
mass flowrvz ~normalized by their maximum values!
at different swirl, characterized byb5v2r w

2 /(RTR)
shown near the curves.
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One more integration yields

W5$exp~by2/2!2exp~b/2!1~11c!@2 lny1Ei~b/2!

2Ei~by2/2!#%/~2b!. ~19b!

Here Ei is the exponential integral function, Ei(z)
52*2z

` exp(2t)t21 dt. Since for smallz, Ei(z)5 ln z1EC
1z1O(z2), where EC~'0.577 216! is the Euler constant,

W~0!5$12exp~b/2!1~11c!

3@Ei~b/2!2 ln~b/2!2EC#%/~2b!. ~19c!

Finally, from ~15! it follows that

c5 1
2@exp~b/2!21#2/@Ei~b!22 Ei~b/2!1 ln~b/4!1EC#

21. ~19d!

For b,1, replacing exp(by2/2) by 11by2/2 in ~19a! and
integrating we obtain the following polynomial approxim
tion:

W5~12y2!c/42~12y4!b~12c!/322~12y6!b2/144,
~19e!

wherec5b(1135b/801b2/20)/(612b13b2/16).
NormalizingW by its maximum valueW(0),

w~y!5W~y!/W~0!,

we find that in the limiting case ofb→0, w has a compac
polynomial form,

w5124y213y4. ~20a!

The maximum downward velocitywmin521/3 is located at
ymin5(2/3)1/250.8165, and the boundary between the co
terflows ~wherew50! is ys51/A350.577.

For b!1, W(0)5b/96, so that the dimensional axia
velocity is

vz5vr ww~y!e Res/96, ~20b!

where Res5r0ivrw
2/m is the swirl Reynolds number. Now w

recall that e is the dimensionless temperature gradiente
5r wTR

21]T/]z, and introduce the Grashof number G
5egcr w

3 r0i
2 /m2, wheregc5v2r w is the maximal centrifuga

acceleration~note that Gr5e Res
2!. Then from ~20b! at y

50, we get
Downloaded 14 Apr 2006 to 129.7.158.43. Redistribution subject to AIP
-

Re5Gr/96,

where Re5r0ivzarw /m is the Reynolds number based on t
velocity on the axis,vza .

Figure 3~a! depicts thew(y) profiles at different values
of swirl b. In addition to the above-mentioned analytical s
lutions @e.g., curve 0 corresponds to~20a!#, we have solved
the problem numerically@numerical integration appear
more convenient than the use of Ei in~19b!–~19d!#. For b
<1, the analytical,~19e! and ~20a!, and numerical results
coincide within the accuracy of drawing in Fig. 3. Forb
.1, Fig. 3 shows the numerical results. High-speed rotat
(b@1) compresses the region of descending flow to the s
wall and decreases the maximum downward velocity
cause density near the wall becomes significantly larger t
near the axis@Fig. 3~b! shows thervz profiles for the
sameb#.

E. Radial distribution of temperature

In ~2e!, the left-hand side and the first term on the righ
hand side are ofO(e2), while the second term on the righ
hand side is ofO(e4) and therefore can be neglected. No
that theO(e2) terms arez independent. So we can introduc
q(y) through the following expansion:

T5TR@12ez/r w1e2q~y!1O~e3!#. ~21!

The equation for the dimensionless temperature perturba
q(y), which follows from~2e!, ~6!, and~16!, is

~yq8!852Pr Res
2 b21y expI @11~ I 2c!~121/g!#W,

~22!

where Pr5cpm/k, g5cp /cv , andcv is the specific heat a
constant volume.

Boundary conditions for an annulus with fixed tempe
tures at the walls are

q~a!50, q~1!50, ~23a!

and for a pipe are

q8~0!50, q~1!50. ~23b!

Since integrating the right-hand side of~22! over the
interval 0<y<1 yields a nonzero quantity in general, w
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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cannot apply the adiabatic-wall condition,q8(1)50. One
exception is the caseg51, when~15! allows adiabatic walls.

The second exception is the narrow-gap case,D5d/r w

!1. As D→0, the term involvingg in ~22! vanishes~both I
andc are proportional toD!, and~22! reduces to

q952D2 Pr Res
2 b21W, ~24a!

where the prime denotes differentiation with respect tox
5(y2a)/D21. Using~18a! we transform~24a! into

q95D5 Pr Res
2~x2x3!/6. ~24b!

Since integrating the right-hand side of~24b! over the inter-
val 21<x<1 yields zero, both the fixed-temperature a
the adiabatic conditions can be applied at the walls. For
fixed-temperature condition,q(21)5q(1)50, the solution
of ~24b!,

q5D5 Pr Res
2~10x323x527x!/360, ~24c!

coincides~after replacement ofg by gc5v2r w! with that
found by Birikh.6 For the conditionq8(21)5q8(1)50
~adiabatic walls!, the solution of~24b!,

q5D5 Pr Res
2~10x323x5215x!/360, ~24d!

is similar to that obtained by Kirdyashkin.7

The third exception is the limiting case ofb→0, where
the term in~22! involving g vanishes because bothI and c
are proportional tob. Then for the pipe flow case,~22! re-
duces to

~yq8!852yw Pr Res
2/96. ~25!

Substitutingw from ~20a! and integrating~25! under condi-
tions ~23b! we get another compact polynomial solution,

q5~12y2!3 Pr Res
2/1152. ~26!

Note thatq8(1)50 for ~26!, i.e., heat flux through the pip
wall is zero.

Figure 4~a! shows the radial profiles of temperature f
different values of swirlb. Curve 0 represents the analytic
solution~26! normalized byq~0!, while the other curves cor
respond to numerically determined solutions of the probl
~22!, ~23b! at g51.4 and Pr50.7. We see that the temper
ture is higher near the axis than near the wall; this occ
because the near-axis flow originates at the hot end. For l
swirl b ~and therefore large axial velocity!, the temperature
near the wall drops below its value at the wall. This dr
occurs because~i! the near-wall flow originates at the col
end and~ii ! cooling by this high-speed flow overcompe
sates the radial heat conduction from the axis~we find that
temperature even on the axis can drop below the wall t
perature in a nonparallel flow; see Sec. VI!.

F. Axial heat flux

Consider heat fluxQ through a normal cross section (z
5const),

Q5E ~rcpvzT2k]T/]z!2pr dr ,
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and introduce the Nusselt number, Nu5Q/Qcond, where
Qcond5*(2k]T/]z)2pr dr is the heat flux due to conduc
tion. Using thee expansion and the dimensionless variabl
and neglecting terms smaller than that ofO(e2), we get

Nu5112 Pre2 Res
2 b21~12a2!21E

a

1

Wq expIy dy.

For a narrow annulus with adiabatic walls, this formula w
the help of~18a! and ~24c! reduces to

Nu5112 Ra2/2835,

where Ra5e Pr Res
2 D45Pru]T/]zur0i

2 gcd
4/(T0m2).

According to experiment,7 the above-mentioned solutio
is valid up to Ra51500 ~Kirdyashkin7 uses a different Ray-
leigh number, RaK52 Ra2/45!. At Ra51500, Nu'1600, i.e.,
the heat flux from the hot end to the cold end is larger
three orders of magnitude than that due to conduction.
Ra.1500, the flow becomes slightly nonparallel and boun
ary layers develop near the walls as Ra further increase

Kirdyashkin7 found that there is no instability, at least u
to Ra515 000 at Pr55 – 7 ~alcohol and water!. In contrast,
Gershuni, Zhukhovitskii, and Myznikov8 found numerically
that the flow becomes linearly unstable~to disturbances
shaped as streamwise vortex rolls! at Ra5880 for Pr.1.
This discrepancy may be due to the difference in the bou
ary conditions for temperature in these two studies: T
experiment7 was with adiabatic walls, i.e., for~24d!, while
the theory8 dealt with fixed-temperature walls, i.e., for~24c!.

FIG. 4. ~a! The dependence of the radial distribution of temperature on s
b. Subscriptsw and a indicate values at the wall and at the axis.~b! The
dependence of heat flux@Nu511Ra2 f (b), f (0)51/(120* 962)# on swirl.
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For the pipe flow, we find that Nu511Ra2 f (b) where
Ra5e Pr Res

2 and f (0)51/(120* 962), according to solutions
~20a! and ~26!. Figure 4~b! shows the numerical results fo
f (b)/ f (0).

IV. END-WALL EFFECT

Solutions obtained in Sec. III describe flows away fro
the end walls of a cylindrical container~Fig. 1!. Now we
consider a simple model of the flow near the end walls.
the end walls, the axial velocityvz must satisfy the no-slip
condition and thereforevz strongly depends onz near the end
walls. As a flow turns around near an end wall, the rad
velocity v r becomes significant. In contrast tov r and vz ,
distributions of the azimuthal velocityvf , temperature, and
density near an end wall are not necessarily very differ
from the distributions away. Therefore, in the following a
proximation we considervf to be z independent and appl
relations~4a!, ~8!, and~10! to obtain solutions forv r andvz

near the endwalls.
First, we introduce the Stokes stream functionC(r ,z):

vz5~rr !21]C/]r , v r52~rr !21]C/]z. ~27!

The continuity equation~1! is automatically satisfied by~27!.
Using ~27! and excluding pressure from ther- and
z-momentum equations in~1! we obtain up toO(e),

~r0r !21]4C/]z41]/]r @r 21]/]r ~r0
21]2C/]z2!

1~r0r !21]3C/]z2]r #

1]/]r @r 21]/]r ~r ]/]r $~r0r !21]C/]r %!#

5e~mr 0!21r1vf
2 /r . ~28!

Next, we approximateC as a product of a function ofr
and a function ofz,

C5er0i
2 m21RTRr w

23W~0!F~z!Q~y!, zI5z/r 0 ,

whereQ(y)5*a
yy exp(I)w(y)dy, according to the first equa

tion in ~27! and ~4b!.
Then, integrating~28! in the radial direction fromr i to

r w we obtain

a4F992a2F91a0F5ar . ~29a!

Here the prime denotes differentiation with respect tozI
5z/r w . Values of constantsa4 , a2 , a0 , andar follow from
the solutions obtained in Sec. III. For example, for a p
flow,

a45W~0!E
0

1

y21 exp~2by2/2!Q~y!dy, a252W~0!,

a05~b/22c!exp~b/2!1c, ar5b2/81~12c!b/2.

In the limiting case ofb→0, we use~20a! to obtainQ
5y2(12y2)2/2. Substitutingc5b/6 and W(0)5b/96 we
get ar5

1
2b, a05 1

2b, and a25b/48, and by integrating we
find a45b/1152. Then,~29a! becomes

F99224F91576F5576. ~29b!

Equation ~29a! must be either integrated in the rang
2 l<z< l , where 2l is the length of a rotating cylindrica
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container~Fig. 1!, under the no-slip conditions atz56 l , or
~due to symmetry! in the range 0<z< l under the following
conditions:

F8~0!5F-~0!50 ~symmetry!,
~30!

F~ l !5F8~ l !50 ~no-slip!.

When the aspect ratio is large (lI[ l /r w@1), we expect
that away from the end wall atz5 l , F becomesz indepen-
dent and that the particular solution of~29a!, Fc5ar /a0 , is
valid ~Fc→1 as swirlb→0!. Near the end wall,Fc must be
corrected with the help of solutions of the uniform version
~29a!,

a4F992a2F91a0F50. ~31!

Solutions of~31! are exponential functions, exp(lx), wherel
are roots of the characteristic relation,a4l42a2l21a050.
Let l15l r1 il i be the root withl r.0 and l i.0 @e.g.,
l1'4.241 i2.45 for ~29b!#. The other three roots are sym
metric in the other quadrants of the complexl plane. The
roots are independent of the aspect ratiol, and vary slightly
with swirl b, as shown in Fig. 5.

The solution of~29a!, satisfying the no-slip conditions is

F5F0$l1 sinh~l1lI!@cosh~l2lI!2cosh~l2zI !#

2l2 sinh~l2lI!@cosh~l1lI!2cosh~l1zI !#%, ~32!

where F05ara0
21/$l1 sinh(l1lI)@cosh(l2lI)21#2l2 sinh(l2lI)

3@cosh(l1lI)21#%, lI5 l /r 0 , andl2 is complex conjugatel1

~so F is real!. Figure 6~a! showsF(z) at b51.
Figures 6~b! and 6~c! depict stream surfaces in the m

ridional (f5const) cross section~only one quarter of the
cross section is shown because of symmetry! at b50 and
b55, respectively. The fluid flows from the cold end towa
the hot end~say, from left to right! near the wall,r 5r w , and
in the opposite direction near the axis,r 50. The axial extent
of the region where the flow turns around near an end wa
close tor w and does not depend on the cylinder length~for
large l!. As swirl increases, streamlines concentrate near
sidewall ~compare theb50 and b55 flow patterns!. We
consider some other~more important and less obvious! ef-
fects of strong swirl in Secs. V and VI.

FIG. 5. Rootl r1 il i ~characterizing the flow dependence onz! as a func-
tion on swirl b.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. ~a! Dependence of the velocity
at the axis on the axial coordinate. Th
velocity is normalized by its value in
the center,z50. ~b!, ~c! Meridional
cross section of stream surfaces at~b!
weak (b→0) and ~c! strong (b55)
swirl. All plots ~a!–~c! are z symmet-
ric.
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V. MODERATE ROTATION

The flow studied in Secs. III and IV does not depend
the radial distribution of temperature~q!. This is due to the
small-parameter expansion, where the swirl velocity is
O(1), theaxial velocity is ofO(e), and the radial tempera
ture difference is ofO(e2). Here, we consider the case
moderate rotation where the radial temperature differen
being ofO(1), strongly influences the flow, while the effec
of v r remains negligible.

According to solutions~24c!, ~24d!, and ~26!, q;Res
2

ande2q;e2 Res
2. Therefore, in the case of intense rotatio

when Res;1/e, the terme2q in ~21! is of O(1). In such a
case,q must influence both the axial velocity and the dens
solutions. To account for this effect, we reconsider the sm
parameter expansion for Res*[e Res;O(1) in the current
section and for Res*@1 in Sec. VI.

First, we modify~5! to

T5TR@q~r !2ez/r w1O~e2!#, ~33!

while keeping~7! and ~8! unchanged. Therefore, we mu
replace~4a! by

p0~r !5RTRr0~r !q~r !, ~34a!

and ~9! by

p1~r !5RTR@r0~r !2q~r !r1~r !#. ~34b!

Thus, the radial variation of temperature~q! now influences
the pressure distribution via~34a! and ~34b!; this is a non-
Boussinesq effect.
Downloaded 14 Apr 2006 to 129.7.158.43. Redistribution subject to AIP
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While the equation for swirl velocity is uncoupled~as
we neglectv r! and solution~3! remains valid, all other equa
tions are now coupled. Here, we usevr w as the scale for
both the swirl and axial velocities,

vf5vr wv~y!, vz5vr ww~y!.

Also, we userR ~reference density! as the scale forr0

andr1 ,

r0~r !5rRr0* ~y!, r1~r !5rRr1* ~y!.

Then the coupled system for the dimensionless variab
r0* , r1* , w, andq is

r0* 85r0* bv2/y2r0* q8/q, ~35a!

r1* 85~r1* 1r0* /q!~bv2/y2q8!/q, ~35b!

w95b21 Res* ~qr1* 2r0* !2w8/y, ~35c!

q95Pr Res* w@~12g!qr1* 2r0* #/g2q8/y, ~35d!

where the prime denotes differentiation with respect toy
5r /r w .

At the outer wall (y51),

r0* ~1!51, w~1!50, q~1!51, ~36!

wherew(1)50 is the no-slip condition, whiler0* (1)51 and
q(1)51 indicate that the reference density and tempera
are located at the outer wall. Now the swirl Reynolds num
is also based on the density at the outer wall, Rs

5rRvrw /m.
For a pipe flow, the symmetry conditions at the axis,y

50, are
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



re
ll

fo

ia

w

-
nt
-

en
o
an

ow
f-
elo

he
ct

to
e

,
ns

w

o
o

2304 Phys. Fluids, Vol. 13, No. 8, August 2001 Shtern, Zimin, and Hussain
w8~0!50, q8~0!50. ~37a!

For an annular flow, the conditions at the inner wall,y5a,
are

w~a!50, q~a!51, ~37b!

where the conditionq(a)51 indicates that the temperatu
at the inner wall is the same as that at the outer wall. Fina
condition ~15! ~zero mass flow rate! must be satisfied with
the help of an appropriate choice of a boundary value
r1* . This makes the problem mathematically closed.

In terms of the new variables, the dimensionless ax
heat flux~Nu! is

Nu5112 Pr Res* e22E
a

1

r0* wqy dy. ~38!

Figure 7~a! shows the numerical results for the pipe flo
at Res*520. The swirl velocityvf , temperatureT, and den-
sity r are normalized by their values at the wall,r 5r w . The
axial velocityvz is normalized by the wall azimuthal veloc
ity vr w . In Fig. 7~a!, we compare the results of the curre
section~solid curves!, of Sec. III ~the Boussinesq approxi
mation, dashed curves!, and of Sec. VI~dotted curves!. Re-
markably, the Boussinesq approximation overestimatesT and
underestimatesr. While the dashed-liner curve shows cen-
trifugal stratification of density at constant temperature@see
the first term on the right-hand side of~35a!#, the solid-liner
curve shows also the additional effect of the radial gradi
of temperature@the second term on the right-hand side
~35a!#. Thus, non-Boussinesq effects are clearly signific
for large Res.

In the approximation used in the current section, the fl
remains parallel. As Res* further increases, nonparallel e
fects become significant and then boundary layers dev
~as evidenced by the planar flow experiment7!. To our knowl-
edge, no theory has so far been developed to predict t
effects. In Sec. VI we investigate weakly nonparallel effe
and estimate an upper value of Res* for which the expansion
of Sec. V remains valid.

VI. RAPID ROTATION

One way to take into account nonparallel effects is
consider more terms in the small-parameter expansion. H
we include theO(e) terms for velocity, which implies a
modification of theO(e) term for temperature. Therefore
we use~8! for density and the following new representatio
for velocity and temperature:

vz5vr w@w0~y!1w1~y!ez/r w1O~e2!#, ~39a!

vf5vr w@v0~y!1v1~y!ez/r w1O~e2!#, ~39b!

v r5evr w@u1~y!1O~e2!#, ~39c!

T5TR@q0~y!2q1~y!ez/r w1O~e2!#. ~39d!

Thus, theO(e) terms for all flow characteristics are no
included. Higher-order terms~having indices other than 0
and 1! are neglected in this truncated representation. N
that theO(e) term for dT/dz is r dependent according t
~39d!, in contrast to~5!, ~21!, and~33!.
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Substituting~8! and ~39! in ~1!, we get the system for
large Res*[e Res,

r085r0bv0
2/y2r0q08/q0 ,

v095v0 /y22v08/y1Res* r0~u1v081w0v11u1v0 /y!,

w095Res* $r0~u1w081w0w1!1b21~r1q02r0q1!%

2w08/y,

q095Pr Res* $r0~u1q082w0q1!2~121/g!@u1br0v0
2/y

1w0~r1q02r0q1!#%2q08/y,

r185@r0w11r1w01~r081r0 /y!u1#/q0 ,

FIG. 7. The radial distribution of temperatureT, densityr ~normalized by
their values at the wall!, swirl vf , and axialvz velocities~normalized by
vr w!, and radial velocityv r ~normalized byevr w! at e50.01, b50.5, Pr
50.7, g51.4. ~a! Boussinesq~dashed curves!, parallel non-Boussinesq
~solid curves!, and weakly nonparallel~dotted curves! approximations at
Res*520, ~b! nonparallel approximation at Res*560, pressurep and axial
gradient of temperaturedT dzare normalized by their wall values.
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u1852yw11u11~yr1w01r08yu1!/r0 ,

v195v1 /y22v18/y1Res* @r0~u1v181w1v11u1v1 /y!

1r1~u1v081w0v11u1v0 /y!#,

w1-5Res* $@r1~u1w081w0w1!1r0~u1w181w1w1!#8

12~r0v1
212r1v0v1!/y%2~w18/y!8,

q195Pr Res* $r1~u1q082w0q1!2r0~u1q181w1q1!

2~121/g!@u1b~r1v0
212r0v0v1!/y1w1~r1q0

2r0q1!22w0r1q1#%2q18/y.

The boundary conditions are no slip at the wall, symmetry
the axis, no total mass flux in thez direction, and the pre-
scribed temperature at the wall:q0(1)5q1(1)51.

Figure 7~a! shows the numerical results for this nonpa
allel flow ~dotted curves! at the same parameter values
those for the parallel flow@solid and dashed curves in Fig
7~a! obtained in Secs. V and III, respectively#. The results of
Secs. V and VI are close to each other forT andr, and the
distribution of the azimuthal velocityvf only slightly differs
from that for solid-body rotation. This difference is due
the radial velocity, which being negative~as the curvev r

depicts! transports angular momentum toward the axis. T
radial velocity v r ~normalized byevr 0 in Fig. 7! is very
small at Res*[e Res520. Thus, by comparing the solid an
dotted curves in Fig. 7~a!, we conclude that the approach
Sec. V is valid for Res*<20. For larger Res* , the nonparallel
nature of the flow causes significant new effects, as show
Fig. 7~b! (Res*560).

The first important feature is that the radial velocity no
radically redistributes the swirl. Thevf maximum in Fig.
7~b! is no longer at the wall@unlike in Fig. 7~a!# and sepa-
rates the vortex core~i.e., the region of nearly solid-bod
rotation! from the outer, nearly potential swirl. Such avf

profile is typical of vortex tubes.
The second important feature is that unlike in Fig. 7~a!,

density has its maximum~at constantz! away from the wall
@curve r in Fig. 7~b!#. This occurs because~i! the tempera-
ture minimum is away from the wall~curveT! and~ii ! tem-
perature and density have strong dependence via~34a!. It
may be emphasized that unliker and T, pressure (;rT)
monotonically increases withr ~curve p!. The effect~i! is
different from that shown in Fig. 4~a!. At such smallb
(50.5), there is no visible decrease in temperature below
wall value in Fig. 4~a!, whereas temperature drops tohalf the
wall value in Fig. 7~b!. Such a remarkable decrease in te
perature occurs due to the radial velocity, despitev r being
small. The radially inward convection~all along the pipe!
opposes heat conduction away from the axis and thus
hances the temperature drop caused by the flow away f
the cold end along the wall.

The third important feature is that temperature on
axis is smaller than at the wall in Fig. 7~b! @unlike in Fig.
7~a!#. Because pressure drops from the wall to the axis, a
batic expansion cools the gas flowing inward. The press
drop becomes so large for strong swirl~e.g., see curvep! that
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this cooling overcompensates heating from the hot end
the near-axis flow. While this heating increases tempera
near the axis for small Res* @Fig. 7~a!, Res*520#, adiabatic
cooling due to the radial convergence of the flow decrea
temperature for large Res* @Fig. 7~b!#, (Res*560).

The fourth striking effect is that the total axial heat tran
fer ~characterized by the Nusselt number Nu! decreases and
even reverses~!! for intense swirl. Figure 8 shows Nu(Res* )
for all the expansions used in this paper: curve 1, for
Boussinesq approximation~Sec. III!; curve 2, for the parallel
non-Boussinesq approximation~Sec. V!; and curve 3, for the
weakly nonparallel approach of the current section. Wh
curves 1 and 2 depict the unbounded increase in heat tran
with swirl, curve 3 shows that Nu reaches its maximum a
then decays~and even changes its sign!. This decay results
from the adiabatic cooling of the gas—an effect absent in
Boussinesq approximation, weak in the parallel no
Boussinesq approximation, and strong in the nonpara
flow for large Res* . Our analysis thus reveals that for th
maximizing heat transfer in centrifugal heat exchange
swirl must neither be too small nor too large.

The fifth feature is that the axial gradient of temperatu
dT/dz, decreases withr @Fig. 7~b!#. Therefore, in contrast to
the weak-swirl case, wheredT/dz is uniform, for strong
swirl dT/dz significantly diminishes near the axis compar
to its prescribed value at the wall. While no data exists
cylindrical flows, such nearly uniform temperature aw
from the walls has indeed been observed in the planar fl7

~this difference in geometry is not central to the effect!.
These nonparallel effects appear even though the ra

velocity v r @which in Fig. 7~b! is three times that in Fig. 7~a!#
remains small compared withvf and vz @Fig. 7~b!#. Thus,
the nonparallel character of the flow becomes important
large Res* (.20). Although our nonparallel approximatio
clearly reveals this fact, this approximation has its limit
tions, in particular, concerning thez extent of the flow, as
Fig. 9 illustrates.

Pursuing the nonparallel character of the meridio
flow, Fig. 9 depicts streamlines at different swirl Reynol

FIG. 8. The dependence of heat transfer~Nu! on swirl (Res* ) according to
the parallel Boussinesq~curve 1!, parallel non-Boussinesq~2! and nonpar-
allel ~3! approximations.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 9. Streamlines of the nonparallel flow at differe
swirl; ~b! corresponds to the maximum heat transf
~see curve 3 in Fig. 8!.
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numbers:~a! Res*520 @same as in Fig. 7~a!#, ~b! Res*540,
where Nu is maximum~curve 3 in Fig. 8!, and~c! Res*560
@same as in Fig. 7~b!#. An artifact of the truncation in thez
expansion is that the flow terminates at curves 0 in Fig
~where curve labels indicate values of the scaled stre
function C!. Recall that the truncation yields negative tem
perature forez/r w.1 @e.g., see~5!#. Therefore, the approac
is certainly invalid for largeuez/r wu, say foruez/r wu.0.5.

As swirl intensifies, streamlines in Fig. 9 concentra
near the wall~as in Fig. 6! and become skewed~unlike in
Fig. 6!. The skewed flow pattern in Fig. 9~b! qualitatively
agrees with that experimentally observed near the hot en
the planar flow,7 which becomes asymmetric with respect
the midplane. The shift of streamlines away from the axis
Fig. 9~c! is consistent with thevz profile in Fig. 7~b!, where
thevz maximum is located away from the axis@unlike in Fig.
7~a!#, i.e., the near-axis flow becomes annular. The ann
flow may serve as a precursor for possible flow reversal n
the axis as swirl further increases. To find this and ot
nonparallel effects, a two-dimensional flow should be co
sidered, since the truncation in our nonparallel approach
comes invalid for very large Res* .

The nonparallel effects revealed in the current sect
are qualitatively different from those in Sec. IV. There, t
flow becomes nonparallel only near the end walls, and
flow pattern isz symmetric~Fig. 6!. Here, the flow pattern is
not zsymmetric~Fig. 9! and the flow is nonparallel even fa
away from end walls~note that the pipe is unbounded an
thatv r is the same at allz!!. The streamlines turn around he
not because of the end walls~as in Sec. IV! but because of
the axial gradient of temperature and the equation of s
~2f! ~i.e., non-Boussinesq effects! that together induce the
radial velocity. In the Boussinesq approximation, the flow
the unbounded pipe remains parallel~Sec. III! as in the pla-
nar case.6 In contrast, the results of the current section sh
that the streamlines converge to the axis not only near the
end wall but also away from both end walls; that is, t
Downloaded 14 Apr 2006 to 129.7.158.43. Redistribution subject to AIP
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convergence occurs in the bulk of the flow while the dive
gence occurs only near the cold end.

We assume that a similar flow pattern occurs in Ranq
tubes and results in energy separation. Figure 10 shows
interpretation of the meridional flow in a Ranque tube. T
incoming gas goes to the hot exit in annular region I and
the cold exit in the U-shaped region II. In circulatory doma
III, the flow converges toward the axis, except near the c
end. The dashed lines show stream surfaces separating
regions. The bulk flow convergence and the pressure d
toward the axis~due to the centrifugal effect! cause adiabatic
cooling. Furthermore, the gas entering the vortex core@say,
r /r w,0.4, as for curvevf in Fig. 7~a!# loses its kinetic en-
ergy due to~turbulent! diffusion occurring away from the
axis. Therefore, stagnation temperature decreases nea
axis and increases near the wall. This energy separation

FIG. 10. Schematic of the meridional flow in a Ranque tube~not in scale!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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the counterflow induce an axial gradient of temperature e
without external heating and cooling~in contrast to heat ex
changers!. Therefore, centrifugal convection is self-sustain
in a Ranque tube. This centrifugal convection drives the m
ridional circulation in domain III~occupying a large part o
the flow region!. Note that the meridional circulation persis
even when the hot outlet is closed~region I shrinks! or the
cold outlet is closed~region II shrinks!.

While it seems reasonable that centrifugal convect
drives the counterflow in Ranque tubes, the situation in
drocyclones appears more enigmatic. Why does the near
backflow occur along the whole axial extent of hydroc
clones despite turbulent mixing? The only explanation is t
a favorable axial gradient of pressure develops along
axis. Such a pressure distribution can also result from c
trifugal convection.

Although the temperature difference in hydrocyclon
~e.g., due to thermal dissipation! is significantly smaller than
in Ranque tubes, the radial gradient of pressure in hydro
clones is large due to a huge liquid to gas density ratio
small axial gradient of temperature and a large radial gra
ent of pressure can cause an axial gradient of pressure a
the axis, which is opposite to that along the wall~as shown in
Fig. 1!. This axial gradient of pressure drives a backflow n
the axis. If our inference is true, centrifugal convecti
should be a generic phenomenon in vortex devices.

An open question is flow stability. The fact that dens
stratification near the wall becomes unstable@curvesr in Fig.
7~b!# can cause the appearance of convection cells. Fo
nately, the unstable layer is located inside the unidirectio
near-wall flow, while near the inflexion point of the axi
velocity profile, density stratification is stable and the dens
gradient is large@compare curvesr and vz in Fig. 7~b!#.
Therefore, the convection-driven counterflow studied in t
paper seems to be stable and provides efficient heat exch
in the axial direction. These features require verification
stability studies.

VII. CONCLUDING REMARKS

Motivated by the search for the driving mechanism fo
centrifugal heat exchanger, we have obtained analytical
numerical solutions describing flows of a compressible fl
induced by the axial gradient of temperature in a rotat
pipe and in a cylindrical annulus. Contrary to the case wh
acceleration and heat flux are parallel, no equilibrium st
exists in the problem considered here, in which accelera
and heat flux are orthogonal: even an arbitrarily small te
perature gradient induces centrifugal convection—flow fr
the cold end to the hot end along the wall and backflow n
the axis.

Such counterflows survive intense turbulent mixing
high Reynolds numbers in vortex tubes and hydrocyclo
~even when their length to diameter ratio exceeds 100!. This
survival results from the pressure gradient driving the ba
flow along all the axial extent of these devices. Our anal
cal solutions explicitly show that the axial gradient of pre
sure,]p/]z, has opposite directions near the wall and n
the axis that explains the counterflow. For example, for w
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rotation,]p/]z;3y221, i.e., ]p/]z.0 at the wall (y51)
and]p/]z,0 on the axis (y50). Figure 11 shows the pres
sure field on a half of the meridional cross section of t
pipe, 0<r<r w and 2 l<z< l . In Fig. 11, bothr and z are
normalized by r w ; p is normalized bypR ; l 55r w , Th

5700 K, Tc5300 K, andb50.2.
Pressure distribution provided by centrifugal convecti

~as shown in Fig. 11! makes the counterflow axially elon
gated. In contrast, vortex breakdown above delta wings
in sealed containers has a short counterflow.

Furthermore, our results indicate a possibility of vort
breakdown suppression with the help of centrifugal conv
tion: For example, in a sealed cylinder with one rotating e
wall, cooling this end wall and heating the fixed end w
should eliminate vortex-breakdown ‘‘bubbles.’’

Our results reveal an interesting non-Boussinesq eff
the bulk-flow convergence toward the axis when swirl
rapid. This convergence induced by a strong radial grad
of pressure~Fig. 11! causes the radial distribution of tem
perature that seems, at the first sight, paradoxical: Des
the fact that the flow moves from the hot end near the a
temperature on the axis becomes lower than the wall t
perature@curveT in Fig. 7~b!#.

This practically important effect occurs due to radial v
locity ~even being very weak!. First, radial convection, being
directed toward the axis, opposes radial thermal conduct
This makes the temperature minimum near the wall~induced
by the flow from the cold end! remarkably smaller than the
wall temperature. Second, the radial flow transports this c
gas toward the axis. Since pressure drops from the wall to
axis, the gas is cooled further by adiabatic expansion. T
cooling overcomes heating~due to the flow from the hot end
near the axis! when rotation is rapid.

As a result, the flow near the axis transports the coo
gas to the cold end~!! while angular momentum and kineti
energy diffuse from the axis; this leads to energy separa
~the Ranque effect!. Due to this effect, the axial heat flu
~characterized by the Nusselt number Nu! reaches its maxi-
mum and then decreases, as swirl further intensifies~curve 3
in Fig. 8!.

Our estimates, based on the solutions obtained h
show that Nu becomes large (.103) for moderate values o

FIG. 11. Pressure distribution in the meridional cross section of a rota
pipe with the axial gradient of temperature.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



Ra

a
-

S
i

ir

o

able

on
’’ J.

ec-

id

nu-
,’’ J.

’’

a
ure

er-

2308 Phys. Fluids, Vol. 13, No. 8, August 2001 Shtern, Zimin, and Hussain
the Rayleigh number, Ra5(e Pr Res
2);103. An open ques-

tion is whether the meridional flow is stable for these
values. Experimental results7 show that the horizontal flow
remains laminar for such Ra. In the rotating cylindric
flows, there are two significant factors~absent in the horizon
tal case!, which should stabilize the counterflow:~i! the
Taylor–Proudman constraint and~ii ! strong density stratifi-
cation in the radial direction due to the centrifugal effect.
we expect that the flow is stable for even larger Ra than
the planar case. Nevertheless, the stability problem requ
further studies.
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