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Analysis of centrifugal convection in rotating pipes
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New exact solutions, obtained for centrifugal convection of a compressible fluid in pipes and
annular pipes, explain axially elongated counterflow and energy separation—poorly understood
phenomena occurring in vortex devices, e.g., hydrocyclones and Ranque tubes. Centrifugal
acceleratiorfwhich can be up to ftimes gravity in practical vortex tubgsombined with an axial
gradient of temperatur@ven sma)l, induces an intense flow from the cold end to the hot end along

the pipe wall and a backflow near the axis. To account for large density variations in vortex devices,
we use the axial temperature gradient as a small parameter instead of the Boussinesq approximation.
For weak pipe rotation, the swirl is of solid-body type and solutions are compabt,,=1
—4y?+3y* and (T-T,)/(T.—T,)=(1—y?3; wherey=r/r,,, the subscriptsv and a denote

values of axial velocity,, temperaturel, and radial distance, at the wall and on the axis. The

axial gradient of pressure, being proportional t’3 1, has opposite directions near the wall,

=1, and near the axig,=0; this explains the counterflow. With increasing pipe rotation, the flow
starts to converge to the axis. This causes important new effgctie density and swirl velocity
maxima occur away from the wallvortex core formatioy (ii) the temperature near the axis
becomes lower than near the wéle Ranque effegt(iii) the axial gradient of temperature drops

from the wall to the axis, andiv) the total axial heat fluXNu) reaches its maximum Ny,

~4000 and then decreases as swirl increases. These features can be exploited for the development
of a micro-heat-exchanger, e.qg., for cooling computer chips2@1 American Institute of Physics.

[DOI: 10.1063/1.1384890

I. INTRODUCTION over a hundred diameters in vortex tubes. The counterflow
occurs despite turbulent mixing at Reynolds numbers ex-
We study the flow of a compressible fluid in rotating ceeding 16 in these devices! This counterflow can signifi-
pipes in the hope of developing innovative heat exchangergantly enhance heat transfer between the hot and cold
Radial acceleration due to rotation and an axial temperaturends—an effect important for heat exchangers.
gradient induce an axially elongated circulatory flow. Fluid While similar counterflows emerge in thermogravita-
moves along the temperature gradient near the wall and baglonal convection as well, centrifugal acceleration can inten-
near the axis of a pipéor near the inner wall of an annulus, sify fluid motion. This swirling flow can be stable for rather
Fig. 1). Therefore, such a counterflow transports the cooledarge Reynolds numbers due to) the Taylor—Proudman
fluid (from the cold englalong the wall and transports the constraint, andii) centrifugal density stratification. These
heated fluid{from the hot englalong the axis. This centrifu- two features—flow intensification and stabilization—are fa-
gal convection can provide efficient heat transfer between th@orable for the development of efficient heat exchangers.
hot and cold ends and, in addition, can protect the pipe side- Thermal convection in rotating systems has been exten-
wall against overheating. sively studied for astrophysical and geophysical applications,
To understand the flow direction, consider the pressure g, for large-scale circulation in the Earth’s atmosphere
distribution induced by the combined effect of centrifugal caused by the temperature difference between equatorial and
force and heating. The centrifugal force causes a radial i”polar regions. Barcilon and Pedloskyand Homsy and
crease in pressure, and the imposed axial gradient of temyydsorf investigated centrifugally generated convection in a
perature makes this increaselependent. That is, due to the rapidly rotating cylinder using the boundary-layer approxi-
density difference between the cold and hot ends, the radighation forl < O(1); 1=I/r,,, where 2 andr,, are the cyl-
increase in pressure near the cold epge—pac. is larger  jnger height and radius. H&rt2000 reviewed and studied in
than the increasedyn—Pan, hear the hot endFigs. 1 and  getajl the casé<1, which is relevant for the Earth’s polar
11). Therefore, there is an axial gradient of pressure, which i$egions. Busskand co-workerssee Ref. 5 for a review
parallel to the temperature gradient near the &g, ( considered convection in a rotating cylindrical annulus sub-
>Pac) and antiparallel along the outer walp(c>Pwn):  jected to aradial temperature gradient, a case relevant to the
Driven by such a pressure distribution, the counterflow caryqyatorial regions. For planets and stars, the centrifugal to
have a large axial extent. For example, counterflow eX'Stﬁravity acceleration ratiag, /g, is small, whereas in vortex

tubes,g./g is very large(e.g., 16), as isl. Here, we con-
dElectronic mail: mece21w@jetson.uh.edu sider smallaxial temperature gradients and largg/g and|
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4 matic viscosity. These parametekssand Re, characterize
-~ the axial temperature gradient and rotation—two factors that
W1 Da Do T, together drive the centrifugal convection. As we will show,
T N TN the axial velocity is proportional te Re;, the induced radial
temperature gradient is proportionalet?JResz, and the radial
velocity is proportional toe? Re, (important nonparallel ef-
fect for rapid rotatioh

First, we considee so small thate Re,<1 even at large
Re,. In this case, the equation for the axial velocity becomes
21 . linear and decoupled from the equation for the radial distri-
bution of temperature. This allows us to obtain solutions in
polynomial forms. In the limiting case of the gap between
cylinders tending to zero, our analytical solutions coincide
with those for the horizontal layer subjected to a horizontal
temperature gradient in the gravity field, obtained by Bitikh
Y N , and by Kirdyashkih under the Boussinesq approximation.
. This agreement shows, in particular, that our approach is

Pah Pwh T . . . . . .
quite consistent with the Boussinesqg approximation for small

o CD €Re;.

. . _ Next, we consider moderate rotation, wher&l but
FIG. 1. Schematic of a centrifugal heat exchanger. An annular container . . . I
filled with a gas rotates around its axis with angular veloaityThe axial €Re s of O(l)' In this case, the radial variations of tem-
gradient of temperature and centrifugal acceleragipinduce thermal con- ~ Perature contribute to the pressure distribution; therefore, the
vection (dashed curveswhich intensifies the heat transfer between the hot Boussinesq approximation is not applicable_ The equations
(z=—1) and cold g=1) ends. for velocity and temperature become coupled and nonlinear;
therefore, in this case, we obtain solutions numerically.
Finally, we consider rapid rotatiors Re>1, where a
for the idealized problem of convection in rotating pipes. weak, O(¢€), deviation from parallel flow occurs, which is
For generality and comparison with known results, wealso a non-Boussinesq effect. The flow converges to the axis
also consider annular pipes. The problem of centrifugal coneausing thati) the density reaches its maximum away from
vection in a narrow-gap annulus is closely related to thehe wall; (ii) in addition to the core with solid-body rotation,
problem of thermogravitational convection in a horizontalan outer region appears where swirl is nearly potential; and
layer subjected to a horizontal temperature gradient. Birikh jii ) the axial gradient of temperature drops from the wall to
obtained an analytical solution for this planar counterflow,the axis.
which agrees well with experimehtt is interesting that the Thus, new features of our problem afe) intense axial
experiment reveals no instability even for Rayleigh numbers counterflow due to largg. /g, (ii) high density gradients due
Ra>10%, although theory predicts that the Birikh flow be- to swirl, and iii) flow convergence to the axis. These are
comes unstable to longitudinal-vortex disturbances for Rassential features for centrifugal heat exchangers.
>10°. In the remainder of the paper we introduce the governing
While buoyancy flows typically remain laminar for Ra equations(Sec. ), obtain solutions for weak rotatiofgec.
<10% heat transfer due to convection is a few orders ofill), consider effects of end walkSec. IV), rapid rotation
magnitude greater than that due to conduction atR&.  (Sec. \}, and the radial velocitySec. V), and discuss the
As g. becomes large, even a small temperature differenceesults(Sec. VII).
leads to intense heat transfer by centrifugal convection. We
estimate thayg./g=10* in centrifugal heat exchangers and
therefore neglect gravity in this paper. This large acceleratiohl. REDUCTION OF THE GOVERNING EQUATIONS
makes the flow very intense even for a small axial tempera- . . .
. . . . . We start with the equations governing steady flows of a
ture gradien{typical for devices with large length/radius ra- . . .
. R . . viscous compressible fluid,
tios). This justifies our approach, where the dimensionless
axial gradient of temperature serves as a small parameter. V-(pv)=0, p(v-V)v=pAv—Vp+(u/3)V(Vv),
Since the Boussinesq approximation is not valid for 1
large density variationstygicargf vortex tubes we use a PCp(VVIT=KATH(v-V)p,  p=pRT. .
different approach: power expansion with respect ¢o Herev is the velocity vectorp, p, andT are density, pres-
=|"1AT/Tg. Here AT=T,— T, (Fig. 1) is the temperature sure, and temperaturg; and « are viscosity and thermal
difference between the hot and cold ends, ang=(T, conductivity;c, is the specific heat at constant pressure; and
+T,)/2 is the reference temperature. For large aspectlratio Ris the gas constant. The contribution of viscous dissipation
e is small even wheAT/Tg is of O(1). in the energy equation is neglected.
In addition toe, another important control parameter is We use cylindrical coordinate$r,,z} and consider
the swirl Reynolds number Igewrﬁ/v; wherew is the an-  flow between two coaxial cylinders under the following con-
gular velocity of the outer wal(Fig. 1) and » is the kine-  ditions: (i) the flow is axisymmetricg/d¢=0, (ii) w and

"~
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are constant, andii) the radial velocity is zeray, =0 (this
condition will be omitted in Secs. IV and YIThen Eq.(1)
reduces to

d(pv,)dz=0, (2a)
pvIr=a(p—2/3uav,)ar, (2b)
P9V 3192= (9% 41 +1 " 1gv 4l Ir —v 4 /12
+0% 4197%), (20
pv,dv,192=—dldz(p— 213udv ,19z) + w(d%v 1 dr?
+rYav,19r + 9%v,197%), (2d)
pv,CodTIdz=v,0pl 92— 2/3u(dv ,192)?+ K(°T/dr?
+r 19T/ or + 0°T197%), (2¢)
p=pRT. (2f)

We will study those solutions d2) which model flows

Shtern, Zimin, and Hussain

Whenuv,=0, (2¢) implies that(5) is valid for allr as well.
For a cylindrical container (Fig. 1), e=3(r,,/1)(Tp
—T.)/Tgr and Tg=(Ty+ T.)/2. A clear limitation for(5) is
that ez/r,, must be smaller than 1, so tha&r,,/I. When
ro/1<1, eis small even fos(T,,—T.)/Tg close to 1. There-
fore, we can uses as a small parameter in the following
expansion.

The axial temperature gradient induces an axial flow in a
rotating pipe. This occurs because the radial difference in
pressurep,,— Pa, iS smaller near the hot en@vhere fluid
has small densijythan near the cold en@vhere fluid has
large density; here, the subscripts anda denote values at
the wall and at the axis. Accordingl,,.>pPwn and pac
<pan; here, the subscripts andh denote the cold and hot
ends (Fig. 1). These opposite axial gradients of pressure
drive a flow from the cold end to the hot end along the wall
and a reversed flow near the axis.

Deducing the governing equation for axial flow frdg),
we first note thai{2a) implies that the producpv, depends

in centrifugal heat exchangers and start with the case Oénly onr. Using the expansion

small temperature gradientSec. IlI).

IIl. CENTRIFUGAL CONVECTION

A. Axial flow at small temperature gradients and
weak swirl

1. Isothermal density stratification caused by rotation

First, consider azindependent solution for a swirling

flow with v,=0 in the gapyr;<r=<r,,, between two cylin-
ders. In this case, Eq20¢) yields a solution for swirl that is a
superposition of solid-body and potential-vortex flows,

vg=wr+I/r, ©)

wherew andI" are integration constants which are specified

by the imposed rotational velocities of the cylinders.
The general solution dRe) is T=Tg+ClInr, whereTg
(reference temperaturand C are constant. Here we p@

p:pO(r)+O(6)1 UZZGU11+O(62),

we see thab ,; also depends only on Then(2d) yields for
the O(e) terms,

aplaz=eu(d?v 4 /dr?+r~1dv,, /dr), (6)
i.e., p has a contribution which is a linear function of

P="Po(r)— €z/r,ps(r)+O(e?). ()
Now using (2f), (4a), (5), and(7) we get

p=po(r)+ ezt yps(r)+0O(€) ®)
and

P1(r)=RTg[po(r) —pa(r)]. 9

Sincedv,/dz is of O(€?), we find from theO(€) terms
in (2b) that

=0, i.e., we consider the temperature at the cylinder walls to

be equal. Then(2f) yields
Po(r)=RTrpo(r), (43

where the subscript “0” denotes the leading term in a small-
whence, with the help of9), we obtain

parameter expansiaisee the following
Upon substituting3) and(4a) in (2b) and integrating we
get

po(r)=poi expL1(r)], (4b)

dpy/dr—pw3/(RTgr)=dpo/dr.
Substituting(4b) and integrating we get

p1=(p1it poil ) EXPI, (10

P1=RTr(poi—p1i— poil JeXpI. (11

Herep,; is a constant of integration to be determined.
Finally, use of(7) and(11) transforms(6) into the fol-

wherep; is the density at the inner cylinder, and the integral|owing form:

I(r)=f v3/(RTgr)dr (40)

d?v,, /dr?+r v, /dr=(1—c)expl poiRTr/(ily),

runs fromr; to r. Solution (4b) gives density stratification wherec=1—p;;/po; .

due to swirl used below.

2. Counterflow induced by axial gradient of
temperature

Next, we impose the following axial temperature gradi-

ent at the walls:
T=Tr(1—€z/r,). (5)

(12)
The no-slip conditions at the cylinder walls,
v,1(ry)=0, (13
va(ri)=0, (14

make the probleni12)—(14a mathematically closed. There
is also the additional integral condition that the mass flow
rate through any cross sectians const, is zero,
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1 1
f po(rv,1(r)rdr=0, (15) 1
Vz
where the integration runs from to r,,. This condition 05 1
determines the parameter 1
In the case of dnonannular pipe, wherer;=0, the axi- ]
symmetry condition, 0]
dv,, /dr(0)=0, (14) ]
replaceq14). . Y
A dimensionless form of12) is -0.5 1 Y ;
(yW)" =y(I - c)expl. (16 f
HereW:Uzl(pOiRTRrW/M)_lv L -
inner wall outer wall
y = =
|=J b(v?/y)dy, (17) rE P
a

FIG. 2. The axial counterflow induced by the axial temperature gradient in
a=r;/ry, b= ergv/(RTR), v =v¢/(wrw), and the prime @ rotating annular pipe far; /r,,=0.5 (solid curve andr;/r,—1 (broken
denotes differentiation with respectye-r/r,,. SinceyRTg SV
is the squared sonic velocity being the specific heat rajio
and wr,, is the maximum rotation velocity, parameteis a
modified Mach number for the swirl. lem), (ii) density is also nearly uniform, ariii ) the cylinder

Now we consider a few particular cases whét6) has  curvature is negligible when the gap between cylinders is
analytical solutions. We start with the narrow-gap casesmall compared with the cylinder radius. However, an im-
where it is possible to compare the results with those for thgortant difference is that the same temperature gradient in-
planar flow? duces significantly strongéby a factor ofg./g) flow in our

case(e.g., atwr,, =100 m/s and,,=0.1m, g./g=10%.
B. Narrow-gap flow

Consider the limiting case whef® both cylinders rotate  C- Finite-gap flow at weak swirl
with the same angular velocity.e., I'=0), and(ii) the gap Analytical solutions in terms of elementary functions
between the cylinders is small compared with the radius ofiso exist for any values af andr,, whenb<1. In this case,
the outer cylinder, 2=r,,—r;<r,,. Then,v andy are both  replacing exp by 1 in (16) and integrating we get
very close to 1, so that we can substituféy=1 in (17) as 4 Lk 2 Lrx2 12
Slr,,—0; this substitution yields=b(y—a). W=[(y"=1)/32+ 517y Iny— 2™ “In“y]

It is convenient to introduce a scaled coordinatehich +Co(1-y)+CyIny, (180
is O(1) in the gap:

x=(y—a)/A—-1, A=(1-a)/2=4Ir.

Sincel=b(1+Xx)A tends to zero ag—1, we take exp

where
C,;=[(1—a%/(32Ina)+i'*a?

=1. In this case(16) reduces to —i*2Ina—Cy(1-a%/Ina],

d?W/dx%= [b(1+Xx)A— C]Z. Co=[24I'* (azr* +I'*— 26.2)|I‘12 at+4(1- az)(1+ a?
Integrating under condition&l3) and (14) and choosing +a*+3* +6I'*2—9a%y)Ina—3(1—a?)?(1
=bA, we find that

+a?)]/[96(1—a?)/(1—a’+Ina+a’lna)],

W= (x3-x)bA%/6. (183 o _ _
andI'* =T'/(wr{). Figure 2 depicts the profiles of, (nor-

For Comparison with the planar flow, we introduce themanzed by its maximum Vah)according tq18a) and(lsb)
Reynolds number, Repg vmd/un, and the Grashof number, at *=0. In the finite-gap annuluga=r;/r,,=0.5, solid
Gr=€g.5*pGi/ (u’rw), wherev,n is the maximal axial ve-  curve), the radial extent of the descending flow and its maxi-
locity, the length scale=(r,,—r;)/2, andg.=w’r,, is the  mum velocity are reduced in comparison with those for the
maximum centrifugal acceleration. Th€bh8g yields narrow gap(a— 1, broken curvg

Re=Gr/\/243. (18b)

Formulas(18a and(18b) coincide with those found by . . . .
Birikh® for a fluid flow between horizontal plates induced by . As another example, consider the 2ﬂ0W n a.rotatmg_ PIPE,
a horizontal gradient of temperature and subjected to onI)'/e" ri:c.)’ I'=0, andv=y. Now, I =by’/2, and integration
gravity (i.e., no centrifugal effe¢t This coincidence is not of (16) yields
surprising becausg) centrifugal acceleration is nearly uni- W' =[1—expby?/2)](1—c)/(by)+ 3y exp(by?/2).
form (as is the gravitational acceleration in the Birikh prob- (193

D. Flow in a pipe
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a b
- (a) - )
VZ pVZ O 3
0.5 10
0.5 1
FIG. 3. The radial distribution of axial velocity, and
10 0 mass flowpv, (normalized by their maximum values
0\N\3 at different swirl, characterized bp=w?r2/(RTg)
0 shown near the curves.
-0.5 1
-005 L} '1 L)
0 0.5 r/rw 1 0 0.5 r/rw 1
One more integration yields Re=Gr/96,
W={exp(by?/2) —exp(b/2) + (1+¢)[2 Iny+Ei(b/2) where Re=pgv,4 /1 is the Reynolds number based on the
—Ei(by?/2)}/(2b). (19b) velocity on the axisy,,.

Figure 3a) depicts thew(y) profiles at different values
Here Ei is the exponential integral function, Bi( of swirl b. In addition to the above-mentioned analytical so-
=—[7,exp(-t)t tdt Since for smallz, Ei(zZ)=Inz+EC |utions[e.g., curve O corresponds (@0a], we have solved
+2z+0(z%), where EC(=~0.577 216 is the Euler constant, the problem numerically[numerical integration appears

W(0)={1—exp(b/2)+ (1+c) more convenient than the use of Ei (h9b)—(19d)]. For b
<1, the analytical,(19e and (208, and numerical results
X[Ei(b/2)—In(b/2) —EC]}/(2b). (199 coincide within the accuracy of drawing in Fig. 3. Fbr

>1, Fig. 3 shows the numerical results. High-speed rotation
(b>1) compresses the region of descending flow to the side-
c=3{exp(b/2)— 1]%/[Ei(b)— 2 Ei(b/2) +In(b/4)+EC]  wall and decreases the maximum downward velocity be-
1 (190 cause density near the wall becomes significantly larger than
’ near the axis[Fig. 3(b) shows thepuv, profiles for the
For b<1, replacing exgfy’/2) by 1+by?2 in (199 and  sameb].
integrating we obtain the following polynomial approxima-

Finally, from (15) it follows that

tion: E. Radial distribution of temperature
W= (1-y?)c/ld—(1—y*b(1—c)/32—(1—y®)b?/144, In (2e), the left-hand side and the first term on the right-
(199  hand side are oD(€?), while the second term on the right-
wherec=b(1+ 350/80+ b%20)/(6+ 2b+ 3b?/16). hand side is 0O(e*) and therefore can be neglected. Note
Normalizing W by its maximum valua\/(0), that theO(€?) terms arez independent. So we can introduce
J(y) through the following expansion:
w(y)=W(y)/W(0),
, _ o T=Tr[1—€z/r,+ *3(y)+O()]. (21)
we find that in the limiting case df—0, w has a compact
polynomial form, The equation for the dimensionless temperature perturbation,

J(y), which follows from(2e), (6), and(16), is
(yd')'=—PrRéb lyexpl[1+(I—c)(1—1/y)]W,

w=1-—4y?+3y*, (209

The maximum downward velocitw,;,=—1/3 is located at

Ymin=(2/3)*2=0.8165, and the boundary between the coun- (22
terflows (wherew=0) is y,= 1/\/3=0.577. where Pecou/k, y=cplc,, andc, is the specific heat at

For b<1, W(0)=b/96, so that the dimensional axial constant volume.
velocity is Boundary conditions for an annulus with fixed tempera-

tures at the walls are
v,=or,W(y)e Re/96, (20b)
. . = 1)= 2

where Re=pgwr2/u is the swirl Reynolds number. Now we Ha)=0, H1)=0, (233
recall thate is the dimensionless temperature gradient, and for a pipe are
=r,Tr'dT/9z, and introduce the Grashof number Gr OO _
= egcl 3 pa/ u?, whereg.= w?r,, is the maximal centrifugal #7(0)=0, ¥(1)=0. (230
acceleration(note that G#eRFﬁ). Then from (20b) at y Since integrating the right-hand side (#2) over the
=0, we get interval O<y=<1 yields a nonzero quantity in general, we
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cannot apply the adiabatic-wall conditiod, (1)=0. One (@)

exception is the case= 1, when(15) allows adiabatic walls.

The second exception is the narrow-gap case,d/r,, 0.8 -
<1. AsA—D0, the term involvingy in (22) vanishegboth| 1 10
andc are proportional ta\), and(22) reduces to T-T, 061 0

Ty Ty

9"=—A2PrRéb 1w, (249 0.4 1 3
where the prime denotes differentiation with respectxto 0.2
=(y—a)/A—1. Using(18a we transform(24g into 0

9"=A5PrR&(x—x%)/6. (24b) 02
Since integrating the right-hand side @&4b) over the inter- 0 05 r/ry !
val —1=<x=<1 vyields zero, both the fixed-temperature and
the adiabatic conditions can be applied at the walls. For the . ®)
fixed-temperature condition}(—1)=3J(1)=0, the solution
of (24b),

3 4
9= A° PrRE(10x*~ 3x>— 7x)/360, (249
[b)

coincides (after replacement of by g.=w?r,,) with that f(0) 2+
found by Birikh® For the conditiond’(—1)=9'(1)=0 .
(adiabatic wallg, the solution of(24b), 14

9=A%PrRe&(10x3—3x>— 15x)/360, (240
is similar to that obtained by Kirdyashkin. 0 5 ) 10

The third exception is the limiting case bf—0, where

the term in(22) involving vy vanishes because bothand ¢
are proportional td. Then for the pipe flow casd22) re-
duces to

FIG. 4. (a) The dependence of the radial distribution of temperature on swirl
b. Subscriptsv and a indicate values at the wall and at the axis) The
dependence of heat fliNu=1+R& f(b), f(0)=1/(12096?)] on swirl.

(yd')' = —ywPrR&/96. (25)

and introduce the Nusselt number, NQ/Q..nq, Where
Qcond= S (— xdTl19z)27r dr is the heat flux due to conduc-
tion. Using thee expansion and the dimensionless variables,

and neglecting terms smaller than that@fe?), we get

Substitutingw from (209 and integrating25) under condi-
tions (23b) we get another compact polynomial solution,

9=(1-y?)°3PrRé/1152. (26)

Note that?’(1)=0 for (26), i.e., heat flux through the pipe
wall is zero.

Figure 4a) shows the radial profiles of temperature for For a narrow annulus with adiabatic walls, this formula with
different values of swirb. Curve 0 represents the analytical the help of(18a and (240 reduces to
solution(26) normalized by3(0), while the other curves cor-
respond to numerically determined solutions of the problem Nu=1+2 R&/2835,
(22), (23b) at y=1.4 and P+0.7. We see that the tempera- where Ra= e PrR€ A*=P1{dT/dz|p5,9.6*/(Tou?).
ture is higher near the axis than near the wall; this occurs According to experimerﬂ,the above-mentioned solution
because the near-axis flow originates at the hot end. For large valid up to Ra= 1500 (Kirdyashkirf uses a different Ray-
swirl b (and therefore large axial velocjtythe temperature leigh number, Ra=2 R&/45). At Ra= 1500, Nu= 1600, i.e.,
near the wall drops below its value at the wall. This dropthe heat flux from the hot end to the cold end is larger by
occurs becausé) the near-wall flow originates at the cold three orders of magnitude than that due to conduction. For
end and(ii) cooling by this high-speed flow overcompen- Ra>1500, the flow becomes slightly nonparallel and bound-
sates the radial heat conduction from the awe find that  ary layers develop near the walls as Ra further increases.
temperature even on the axis can drop below the wall tem-  Kirdyashkirf found that there is no instability, at least up
perature in a nonparallel flow; see Sec).VI to Ra= 15000 at Pr5-7 (alcohol and watér In contrast,
Gershuni, Zhukhovitskii, and Myznik8ound numerically
that the flow becomes linearly unstab{® disturbances
shaped as streamwise vortex rpllt Ra=880 for Pr>1.
This discrepancy may be due to the difference in the bound-
ary conditions for temperature in these two studies: The
experiment was with adiabatic walls, i.e., fo24d), while
the theor{ dealt with fixed-temperature walls, i.e., f6#40).

1
Nu=1+2 Pre? Ré bfl(l—az)*lf W exply dy.
a

F. Axial heat flux

Consider heat fluxQ through a normal cross sectiom (
=const),

Q= f (pCpv,T—kdTldz)27r dr,
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For the pipe flow, we find that Nal+R& f(b) where 6
Ra= e Pr Réf andf(0)=1/(120°96%), according to solutions
(209 and(26). Figure 4b) shows the numerical results for 3 Ae
f(b)/f(0). 4- .
IV. END-WALL EFFECT 3 7»
Solutions obtained in Sec. Il describe flows away from 5
the end walls of a cylindrical containdFig. 1). Now we
consider a simple model of the flow near the end walls. At 1
the end walls, the axial velocity, must satisfy the no-slip
condition and therefore, strongly depends onnear the end U L B B B
walls. As a flow turns around near an end wall, the radial 0 2 4, 6 8 10

velocity v, becomes significant. In contrast t9 andv,,

distributions of the azimuthal velocitzy'¢, temperature, and EIG. 5. Ro_ot)\,+i)\i (characterizing the flow dependence »ras a func-
density near an end wall are not necessarily very differeno" o" SWib

from the distributions away. Therefore, in the following ap-

proximation we considev , to be z independent and apply

relations(4a), (8), and(10) to obtain solutions fov, andv,  container(Fig. 1), under the no-slip conditions at= +1, or

near the endwalls. (due to symmetryin the range & z=<I under the following
First, we introduce the Stokes stream functi®(r,z): conditions:
v,=(pr) taW¥lor, v,=—(pr) ta¥laz. (27 ®'(0)=d"(0)=0 (symmetry,
The continuity equatiofl) is automatically satisfied b§27). ®(=d'(1)=0 (no-slip). (30
Using (27) and excluding pressure from the- and o
zmomentum equations ifl) we obtain up toO(e), When the aspect ratio is largé<l/r,,>1), we expect

that away from the end wall &=1, ® becomes indepen-

~1.4 4 -1 ~1.2 2
(por) 0" Wlaz"+dlor[r™ =9l r(po ~0"W/9Z°) dent and that the particular solution @93, ®.=a, /a,, is

+(pot ) ~La*W 1 92201 ] valid ((I)cell as swirlb—0). Negr the end wa]kI)c must pe
corrected with the help of solutions of the uniform version of

+alor[r~Yalar(ralar{(por) taWwlaor})] (293,

=e(uro) tpavir. (28 a,®"" —a,d"+a,d=0. (31)

Next, we approximat& as a product of a function af  Solutions of(31) are exponential functions, exp(), wherex
and a function of, are roots of the characteristic relatica\*—a,\?+ay=0.
_ _ Let A ;=\,+i\; be the root withA\,>0 and\;>0 [e.qg.
— 2 1 3 — 1 r i r i '
V= epoin RTr1,“W0)2(2)Q(Y), z=2/To, N1~4.24+i2.45 for (29b)]. The other three roots are sym-
whereQ(y) = Yy exp()w(y)dy, according to the first equa- metric in the other quadrants of the complexplane. The

tion in (27) and(4b). roots are independent of the aspect ratiand vary slightly
Then, integrating28) in the radial direction fronr; to  with swirl b, as shown in Fig. 5.

ry we obtain The solution of(293, satisfying the no-slip conditions is
a,0" —a,d"+ayd=a,. (299 O =d{\y sinh(\y1)[coshh,l) —coshir,2)]

Here the prime denotes differentiation with respectzto — Nz sinh(\,l)[coshiny]) —coshin,2)1}, (32)

=z/r,,. Values of constants,, a,, ao, anda, follow from . ] .
the solutions obtained in Sec. Ill. For example, for a pipeVhere ®o=a;a, “/{\; sinhl)[coshfzl)—1]—A\,sinh(l)

flow, X[cosh{)—1]}, I=1/ry, andX, is complex conjugate ;
. (so® is rea). Figure §a) showsd(z) atb=1.
—W(0 -1 —bv2/2 dy, — 2W(0), Figures @b) and &c) depict stream surfaces in the me-
as ( )joy SXp—byT2QW)dy. 2, ©) ridional (¢=const) cross sectiofonly one quarter of the

5 cross section is shown because of symmeatyb=0 and
ao=(b/2—c)expb/2)+c, a;=b%/8+(1-c)bi2. b=5, respectively. The fluid flows from the cold end toward
In the limiting case ofbb—0, we use(209 to obtainQ  the hot endsay, from left to right near the wally =r,,, and
=y?(1—-y?)?/2. Substitutingc=b/6 and W(0)=b/96 we in the opposite direction near the axis; 0. The axial extent
geta,=1b, ag=1b, anda,=b/48, and by integrating we of the region where the flow turns around near an end wall is
find a,=b/1152. Then(299 becomes close tor,, and does not depend on the cylinder len@tr
. " _ largel). As swirl increases, streamlines concentrate near the
O = 2427+ 576D =576 (29b) sidewall (compare theb=0 andb=5 flow patterns We
Equation (299 must be either integrated in the range, consider some othgmore important and less obvigusf-
—I=z=I, where 2 is the length of a rotating cylindrical fects of strong swirl in Secs. V and VI.

Downloaded 14 Apr 2006 to 129.7.158.43. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 13, No. 8, August 2001 Analysis of centrifugal convection in rotating pipes 2303

S
o o O
N & oy © B

z/Ty
(b)
1¥ FIG. 6. (a) Dependence of the velocity
0.8k ] at the axis on the axial coordinate. The
) velocity is normalized by its value in
g, 00 DD ] the center,z=0. (b), () Meridional
0.4+t 1 cross section of stream surfaces(fat
0.2 F weak (b—0) and(c) strong p=5)
ot ‘ 2 swirl. All plots (a)—(c) arez symmet-
0 1 2 3 4 5 ric.
Z/r\\'
©
1F
0.8 F >
y 0.6 F
g.af
0.2}
0k .
0 1 2 3 4 5
z/ry
V. MODERATE ROTATION While the equation for swirl velocity is uncouplgds

o we negleci,) and solution3) remains valid, all other equa-

The flow studied in Secs. Ill and IV does not depend ONions are now coupled. Here, we usg,, as the scale for
the radial distribution of temperatuke?). This is due to the both the swirl and axial velocities,
small-parameter expansion, where the swirl velocity is of
O(1), theaxial velocity is ofO(e), and the radial tempera- vp=ory(Y), v=or,W(Yy).
ture difference is 0fO(e?). Here, we consider the case of Also, we usepg (reference densilyas the scale forp,
moderate rotation where the radial temperature differenceandpl,
being of O(1), strongly influences the flow, while the effect
of v, remains negligible. po(r)=prog(Y),  pa(r)=prei(Y).

According to solutiong24¢), (24d), and (26), 9~ RQE Then the coupled system for the dimensionless variables,
and 29~ > R€.. Therefore, in the case of intense rotation, ,x %\ and 9 is
when Re~1/e, the terme2d in (21) is of O(1). Insucha 0 "+

case,§ must influence both the axial velocity and the density P =pg bv?/y—pg 9’19, (359
solutions. To account for this effect, we reconsider the small- K1 ok % 20, o

parameter expansion for ReeRe~O(1) in the current P1 =(p1tpolD)(buTly =919, (35h)
section and for Re>1 in Sec. VI. wW'=b 1Re (9pF —ps)—w'ly, (350

First, we modify(5) to
9"=PrREW[(1—y)Ip} —pg 1l y—9'ly, (350

where the prime denotes differentiation with respectyto

while keeping(7) and (8) unchanged. Therefore, we must =r/ry,.
replace(4a by At the outer wall f=1),

T=Tr[9(r)— ez/r,+O(€?)], (33

Po(r) =R Trpo(r) (1), (343 po(D=1, wl)=0, H(1)=1, (39
wherew(1)=0 is the no-slip condition, whilg§ (1)=1 and
and(9) by 9(1)=1 indicate that the reference density and temperature
p1(1)=RTRl po(r)— 3(r)ps(r)]. (34b) are located at the outer wall. Now the swirl Reynolds number
is also based on the density at the outer wall,s Re
Thus, the radial variation of temperatur@ now influences  =pgror,,/u.
the pressure distribution vig84g and (34b); this is a non- For a pipe flow, the symmetry conditions at the ayis,
Boussinesq effect. =0, are
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w’'(0)=0, 9¥'(0)=0. (379

For an annular flow, the conditions at the inner wghs a,
are

w(a)=0, ®(a)=1, (37h

where the condition¥(a) =1 indicates that the temperature
at the inner wall is the same as that at the outer wall. Finally,
condition (15) (zero mass flow rajemust be satisfied with
the help of an appropriate choice of a boundary value for
p3 . This makes the problem mathematically closed.

In terms of the new variables, the dimensionless axial
heat flux(Nu) is

1
Nu=1+2 PrRége—Zf pewdy dy. (39
a

Figure {a) shows the numerical results for the pipe flow
at Rg =20. The swirl velocityv ,, temperaturel, and den-
sity p are normalized by their values at the walsr,,. The
axial velocityv, is normalized by the wall azimuthal veloc-
ity wr,,. In Fig. 7@, we compare the results of the current
section(solid curve$, of Sec. Il (the Boussinesq approxi-
mation, dashed curvisand of Sec. VI(dotted curveps Re-
markably, the Boussinesq approximation overestimaimsd
underestimatep. While the dashed-ling curve shows cen-
trifugal stratification of density at constant temperatisee
the first term on the right-hand side @53a], the solid-linep
curve shows also the additional effect of the radial gradient
of temperaturgthe second term on the right-hand side of
(35a)]. Thus, non-Boussinesq effects are clearly significant
for large Re.

In the approximation used in the current section, the flow
remains parallel. As Refurther increases, nonparallel ef-
fects become significant and then boundary layers develop
(as evidenced by the planar flow experinferito our knowl-
edge, no theory has so far been developed to predict these
effects. In Sec. VI we investigate weakly nonparallel effects

Shtern, Zimin, and Hussain
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and estimate an upper value Ofg-'\’ﬁE)r which the expansion FIG. 7. The radial distribution of temperatufe densityp (normalized by

of Sec. V remains valid.

their values at the wall swirl v, and axialv, velocities (normalized by

wry), and radial velocityy, (normalized byewr,) at e=0.01,b=0.5, Pr
=0.7, y=1.4. () Boussinesqg(dashed curves parallel non-Boussinesq
VI. RAPID ROTATION (solid curve$, and weakly nonparalle(dotted curvels approximations at
Re* =20, (b) nonparallel approximation at Be=60, pressurg and axial
One way to take into account nonparallel effects is togradient of temperaturéT dzare normalized by their wall values.

consider more terms in the small-parameter expansion. Here
we include theO(e) terms for velocity, which implies a
modification of theO(e) term for temperature. Therefore,
we use(8) for density and the following new representations
for velocity and temperature:

v,= or  [Wo(Y)+W,(y)ez/r,+O(e?)], (393
vg=wry[vg(y) +va(y)ez/r,+O(e)], (39
v, =€wr,[Ui(y)+O0(e)], (399
T=Trl9o(y) — 91(y)€z/r,,+ O(€?)]. (399

Thus, theO(e) terms for all flow characteristics are now
included. Higher-order terméhaving indices other than 0
and ) are neglected in this truncated representation. Note
that theO(e€) term for dT/dz is r dependent according to
(39d), in contrast to(5), (21), and(33).

larg

Substituting(8) and (39) in (1), we get the system for
e R€=cRe,,

po=pobudly—podol o,

vo=voly?—vgly+Re po(Urvg+Wous+Uvoly),

Wi =Re { po(Uy W)+ Wow,) +b ™ 1(p1 9 — podh)}
—Woly,

94=PrR& {po(uy9§—Wod1) — (1— L/y)[usbpeudly
+Wo(p1do—poda) I} — 9oy,

p1=[poW1+ p1Wo+ (po+poly)usl/ Oy,
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Up= =YWy + U+ (Yp1Wo+ poy )/ po, 5000 ]
v]=v11y?—vily+Re [ po(Uv 1+ Wiv 1+ U, 1Y) Nu
+p1(Ugvo+Wous +Ugvo/Y)], 2500 ] 3 2
WY = Re {[ p1(UsWg+WoWy) + po(Uy Wy +wiwq)]’
+2(povi+2p1weva)ly}—(Wily)', j
91 =PrRe {p1(u19g—wod1) = po(uy 91 +w; ) 0 |
— (1= Uy)[ush(p1v§+2pevov 1)/ +Wi(p1 Do
—pod1) — 2Wopy 911} — D41y, 22500 ] N
The boundary conditions are no slip at the wall, symmetry on 0 40 Re, 80

the- axis, no total mass flux in tredirection, and the pre- FIG. 8. The dependence of heat trandfeun) on swirl (Re*) according to
Scnb?d temperature at the Wa&O,(l): 9,(1)=1. . the parallel Boussinesggurve 1), parallel non-Boussines@) and nonpar-
Figure 1a) shows the numerical results for this nonpar- ajel (3) approximations.
allel flow (dotted curvepat the same parameter values as
those for the parallel floyjsolid and dashed curves in Fig.
7(a) obtained in Secs. V and lll, respectivélyrhe results of  this cooling overcompensates heating from the hot end by
Secs. V and VI are close to each other Toandp, and the the near-axis flow. While this heating increases temperature
distribution of the azimuthal velocity, only slightly differs  near the axis for small Re[Fig. 7(a), Re =20], adiabatic
from that for solid-body rotation. This difference is due to cooling due to the radial convergence of the flow decreases
the radial velocity, which being negativ@s the curvev, temperature for large BeFig. 7(b)], (R& =60).
depicts transports angular momentum toward the axis. The  The fourth striking effect is that the total axial heat trans-
radial velocityv, (normalized byewrq in Fig. 7) is very  fer (characterized by the Nusselt number)Niecreases and
small at Ré=eRe,=20. Thus, by comparing the solid and even reversefl) for intense swirl. Figure 8 shows Nu(Re
dotted curves in Fig. (&), we conclude that the approach of for all the expansions used in this paper: curve 1, for the
Sec. V is valid for RE<20. For larger R, the nonparallel Boussinesq approximatidisec. Il); curve 2, for the parallel
nature of the flow causes significant new effects, as shown inon-Boussinesq approximati¢Bec. \j; and curve 3, for the
Fig. 7(b) (R =60). weakly nonparallel approach of the current section. While
The first important feature is that the radial velocity now curves 1 and 2 depict the unbounded increase in heat transfer
radically redistributes the swirl. The, maximum in Fig.  with swirl, curve 3 shows that Nu reaches its maximum and
7(b) is no longer at the wallunlike in Fig. 1a)] and sepa- then decaygand even changes its sigihis decay results
rates the vortex coréi.e., the region of nearly solid-body from the adiabatic cooling of the gas—an effect absent in the
rotation from the outer, nearly potential swirl. Suchug Boussinesq approximation, weak in the parallel non-
profile is typical of vortex tubes. Boussinesq approximation, and strong in the nonparallel
The second important feature is that unlike in Fige)7  flow for large Ré&. Our analysis thus reveals that for the
density has its maximurtat constani) away from the wall maximizing heat transfer in centrifugal heat exchangers,
[curve p in Fig. 7(b)]. This occurs becausg) the tempera- swirl must neither be too small nor too large.
ture minimum is away from the walcurveT) and (ii) tem- The fifth feature is that the axial gradient of temperature,
perature and density have strong dependence34a). It  dT/dz decreases with[Fig. 7(b)]. Therefore, in contrast to
may be emphasized that unlikeand T, pressure {pT) the weak-swirl case, wherdT/dz is uniform, for strong
monotonically increases with (curve p). The effect(i) is  swirl dT/dz significantly diminishes near the axis compared
different from that shown in Fig. (4). At such smallb to its prescribed value at the wall. While no data exists for
(=0.5), there is no visible decrease in temperature below itsylindrical flows, such nearly uniform temperature away
wall value in Fig. 4a), whereas temperature dropshialfthe ~ from the walls has indeed been observed in the planar flow
wall value in Fig. Tb). Such a remarkable decrease in tem-(this difference in geometry is not central to the effect
perature occurs due to the radial velocity, despitebeing These nonparallel effects appear even though the radial
small. The radially inward convectiotall along the pipg  velocityv, [which in Fig. 7b) is three times that in Fig.(@)]
opposes heat conduction away from the axis and thus ememains small compared with, andv, [Fig. 7(b)]. Thus,
hances the temperature drop caused by the flow away froitme nonparallel character of the flow becomes important for
the cold end along the wall. large R&(>20). Although our nonparallel approximation
The third important feature is that temperature on theclearly reveals this fact, this approximation has its limita-
axis is smaller than at the wall in Fig(hj [unlike in Fig. tions, in particular, concerning the extent of the flow, as
7(a)]. Because pressure drops from the wall to the axis, adiaFig. 9 illustrates.
batic expansion cools the gas flowing inward. The pressure Pursuing the nonparallel character of the meridional
drop becomes so large for strong swelg., see curvp) that  flow, Fig. 9 depicts streamlines at different swirl Reynolds
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(@) Re, =20 (b)Re, =40 (c)Re, =60
1 .
: \6/
0.5 1
£z/r, ]
O 4
] FIG. 9. Streamlines of the nonparallel flow at different
swirl; (b) corresponds to the maximum heat transfer
i (see curve 3 in Fig.)8
-0.5 1

-1.5 -

axis wall

numbers:(a) Re =20 [same as in Fig. ()], (b) Re=40, convergence occurs in the bulk of the flow while the diver-
where Nu is maximungcurve 3 in Fig. 8, and(c) ReZ=60  gence occurs only near the cold end.
[same as in Fig. (b)]. An artifact of the truncation in the We assume that a similar flow pattern occurs in Ranque
expansion is that the flow terminates at curves 0 in Fig. gubes and results in energy separation. Figure 10 shows our
(where curve labels indicate values of the scaled streariiterpretation of the meridional flow in a Ranque tube. The
function ¥). Recall that the truncation yields negative tem-incoming gas goes to the hot exit in annular region | and to
perature forez/r,,>1 [e.g., se€5)]. Therefore, the approach the cold exit in the U-shaped region Il. In circulatory domain
is certainly invalid for largd ez/r,,|, say for|ez/r,,|>0.5. 1, the flow converges toward the axis, except near the cold
As swirl intensifies, streamlines in Fig. 9 concentrate€nd. The dashed lines show stream surfaces separating these
near the wall(as in Fig. 6 and become skewe@inlike in ~ regions. The bulk flow convergence and the pressure drop
Fig. 6). The skewed flow pattern in Fig.(9 qualitatively — toward the axigdue to the centrifugal effectause adiabatic
agrees with that experimentally observed near the hot end @ooling. Furthermore, the gas entering the vortex ¢segy,
the planar flow, which becomes asymmetric with respect to/rw<0.4, as for curves, in Fig. 7(a)] loses its kinetic en-
the midplane. The shift of streamlines away from the axis in€rgdy due to(turbuleny diffusion occurring away from the
Fig. 9(c) is consistent with the, profile in Fig. 7b), where  axis. Therefore, stagnation temperature decreases near the
thev, maximum is located away from the afisnlike in Fig. ~ axis and increases near the wall. This energy separation and
7(a)], i.e., the near-axis flow becomes annular. The annular
flow may serve as a precursor for possible flow reversal near
the axis as swirl further increases. To find this and other cold
n_onparalle_l effects, a twq-dimensional flow should be con- inflow _i P e—
sidered, since the truncation in our nonparallel approach be- N
comes invalid for very large Re
The nonparallel effects revealed in the current section
are qualitatively different from those in Sec. IV. There, the
flow becomes nonparallel only near the end walls, and the
flow pattern isz symmetric(Fig. 6). Here, the flow pattern is
not zsymmetric(Fig. 9) and the flow is nonparallel even far
away from end wallgnote that the pipe is unbounded and
thatv, is the same at alt!). The streamlines turn around here
not because of the end wallas in Sec. IV but because of
the axial gradient of temperature and the equation of state
(2f) (i.e., non-Boussinesq effegtshat together induce the
radial velocity. In the Boussinesq approximation, the flow in I
the unbounded pipe remains parall8kc. Ill) as in the pla- hot |
nar casé.In contrast, the results of the current section show outflow
that the streamlines converge to the axis not only near the hot
end wall but also away from both end walls; that is, theFiG. 10. Schematic of the meridional flow in a Ranque t(et in scalg.
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the counterflow induce an axial gradient of temperature ever
without external heating and cooli@ contrast to heat ex-
changers Therefore, centrifugal convection is self-sustained
in a Ranque tube. This centrifugal convection drives the me-
ridional circulation in domain Ill(occupying a large part of
the flow region. Note that the meridional circulation persists
even when the hot outlet is closéakgion | shrink$ or the
cold outlet is closedregion Il shrinks.

While it seems reasonable that centrifugal convection
drives the counterflow in Ranque tubes, the situation in hy-
drocyclones appears more enigmatic. Why does the near-axi
backflow occur along the whole axial extent of hydrocy-
clones despite turbulent mixing? The only explanation is that
a .favorable axial gradie_nt .Of pressure develops along thleZIG 11. Pressure distribution in the meridional cross section of a rotating
axis. Such a pressure distribution can also result from cerb—ipe' with the axial gradient of temperature.
trifugal convection.

Although the temperature difference in hydrocyclones
(e.g., due to thermal dissipatipis significantly smaller than rotation, dp/9z~3y?—1, i.e., dp/9z>0 at the wall =1)
in Ranque tubes, the radial gradient of pressure in hydrocyanddp/9z<0 on the axis y=0). Figure 11 shows the pres-
clones is large due to a huge liquid to gas density ratio. Asure field on a half of the meridional cross section of the
small axial gradient of temperature and a large radial gradipipe, O<r=<r,, and —I=<z=I. In Fig. 11, bothr andz are
ent of pressure can cause an axial gradient of pressure alomgrmalized byr,,; p is normalized bypg; |=5r,,, T}
the axis, which is opposite to that along the wal shownin  =700K, T,=300K, andb=0.2.

Fig. 1). This axial gradient of pressure drives a backflow near ~ Pressure distribution provided by centrifugal convection
the axis. If our inference is true, centrifugal convection(as shown in Fig. 1 makes the counterflow axially elon-

should be a generic phenomenon in vortex devices. gated. In contrast, vortex breakdown above delta wings and
An open question is flow stability. The fact that density in sealed containers has a short counterflow.
stratification near the wall becomes unstdloiervesp in Fig. Furthermore, our results indicate a possibility of vortex

7(b)] can cause the appearance of convection cells. Fortisreakdown suppression with the help of centrifugal convec-
nately, the unstable layer is located inside the unidirectionajion: For example, in a sealed cylinder with one rotating end
near-wall flow, while near the inflexion point of the axial wall, cooling this end wall and heating the fixed end wall
velocity profile, density stratification is stable and the densityshould eliminate vortex-breakdown “bubbles.”

gradient is larggcompare curvep and v, in Fig. 7(b)]. Our results reveal an interesting non-Boussinesq effect:
Therefore, the convection-driven counterflow studied in thishe bulk-flow convergence toward the axis when swirl is
paper seems to be stable and provides efficient heat exchanggpid. This convergence induced by a strong radial gradient
in the axial direction. These features require verification byof pressure(Fig. 11) causes the radial distribution of tem-
stability studies. perature that seems, at the first sight, paradoxical: Despite
the fact that the flow moves from the hot end near the axis,
temperature on the axis becomes lower than the wall tem-
peraturglcurveT in Fig. 7(b)].

Motivated by the search for the driving mechanism fora  This practically important effect occurs due to radial ve-
centrifugal heat exchanger, we have obtained analytical anldcity (even being very weakFirst, radial convection, being
numerical solutions describing flows of a compressible fluiddirected toward the axis, opposes radial thermal conduction.
induced by the axial gradient of temperature in a rotatingThis makes the temperature minimum near the Watuced
pipe and in a cylindrical annulus. Contrary to the case wheréy the flow from the cold endremarkably smaller than the
acceleration and heat flux are parallel, no equilibrium statevall temperature. Second, the radial flow transports this cold
exists in the problem considered here, in which acceleratiogas toward the axis. Since pressure drops from the wall to the
and heat flux are orthogonal: even an arbitrarily small tem-axis, the gas is cooled further by adiabatic expansion. This
perature gradient induces centrifugal convection—flow fromcooling overcomes heatirngue to the flow from the hot end
the cold end to the hot end along the wall and backflow neanear the axiswhen rotation is rapid.
the axis. As a result, the flow near the axis transports the cooled

Such counterflows survive intense turbulent mixing forgas to the cold end) while angular momentum and kinetic
high Reynolds numbers in vortex tubes and hydrocyclonegnergy diffuse from the axis; this leads to energy separation
(even when their length to diameter ratio exceeds)10his  (the Ranque effett Due to this effect, the axial heat flux
survival results from the pressure gradient driving the back{characterized by the Nusselt number)Neaches its maxi-
flow along all the axial extent of these devices. Our analyti-mum and then decreases, as swirl further intensifies/e 3
cal solutions explicitly show that the axial gradient of pres-in Fig. 8).
sure,dp/dz, has opposite directions near the wall and near  Our estimates, based on the solutions obtained here,
the axis that explains the counterflow. For example, for wealshow that Nu becomes large-(L0®) for moderate values of

VII. CONCLUDING REMARKS
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