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Measuring spatial coupling in inhomogeneous dynamical systems

George Broze, Satish Narayanan, and Fazle Hussain
University of Houston Mechanical Engineering Department, Houston, Texas 77204-4792

~Received 15 July 1996; revised manuscript received 18 November 1996!

We propose coherence as a tool to quantify spatiotemporal dynamics, in particular, in spatially inhomoge-
neous dynamical systems. We demonstrate coherence to be an appropriate measure of predictability and,
hence, spatial coupling in nonlinear systems, using analysis and via experimental results from a circular jet
flow. Coherence measurements reveal sizable regions of strong spatial coupling in this spatially developing
open flow, in contrast to much smaller coupling regions indicated by conventional correlation. Decaying
coherence, indicating spatiotemporal dynamics, is also found in the jet, and possible physical mechanisms are
discussed. In addition, the causes for coherence decay are explained analytically.@S1063-651X~97!00204-3#

PACS number~s!: 47.20.2k, 47.27.2i
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I. INTRODUCTION

Experimental studies of spatially extended dynamical s
tems @1# utilize the idea of spatial coupling. Coupling
throughout the domain indicates temporal dynamics~permit-
ting the capture of dynamics through single-point measu
ments!, while its spatial decay indicates spatiotemporal d
namics ~requiring simultaneous measurements at multi
locations!. The number and locations of probes required
describe the dynamics adequately depend on the spatia
tent of coupling and the domain size, thus necessitating
tial coupling measurements. Devising an appropriate m
sure of spatial coupling is the goal of this paper.

Inhomogeneous systems are typified by spatially vary
dynamical quantities, e.g., modal amplitude and pha
Single-mode systems can be described by a single freque
mode shape, and phase speed or, phase envelope. In co
multimode systems have a spectrum of mode shapes
phase speeds, making the dynamics, particularly com
modal interactions, much more difficult to describe. In th
paper, we address the spatiotemporal dynamics of inho
geneous multimode systems. Such systems are common
of major scientific and technological interest, e.g., in op
flow hydrodynamics.

Measures often used in homogeneous spatiotemporal
tems, e.g., correlation length@1,2# and dimension density@3#,
may be inapplicable to inhomogeneous systems due to
spatially varying length and time scales. Ordinary cohere
and cross bicoherence were used to infer spatial couplin
a plane mixing layer~an inhomogeneous open flow! @4#.
Spectra and bispectra~from which coherence is derived!
were previously used to describe energy transfer among
quencies~accompanying transition to turbulence! in plasmas
@5#, in free shear layers@6# and in a Poiseuille-profile jet@7#.
However, for the first time, coherence is shown here to b
reliable measure of spatial coupling.

The paper is organized as follows. In Sec II, coherenc
shown to be a measure of ‘‘predictability’’ and of spati
coupling in dynamical systems. Coherence is compared w
conventionally used correlation, and the causes of its sp
decay are analytically illustrated. A coupling measure
quadratically nonlinear systems is formulated~which can be
extended to higher-order, e.g., cubic and quartic, systems!. In
551063-651X/97/55~4!/4179~8!/$10.00
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Sec III, experimental measurements of coherence and co
lation are used to analyze spatiotemporal dynamics in
openflow ~viz., a circular jet!, and possible physical mecha
nisms for the observed coherence decay are analyzed.
cluding remarks are presented in Sec. IV.

II. COUPLING IN LINEAR
AND NONLINEAR SYSTEMS

By spatial coupling we mean that the dynamics at o
location can be predicted using measurements at ano
This implies the existence of an underlying predictive fun
tion or a dynamical system~perhaps low dimensional!.

A. Linear model

For a linear system, thetransfer function H( f ) is used for
prediction~Fig. 1!. Here, we employ standard signal proces
ing formulations with one important distinction: the inp
x(t) and outputy(t) signals are fromspatially separated
probes. It is indeed this distinction which permits the inte
pretation of coherence as a measure of the spatiotemp
dynamics.

In an ideal ~i.e., single-input, noise-free, linear! system
with knownH( f ) and input, one can predict the output si
nal, Fourier transform, and power spectrum, respectively

y~ t !5h~ t !* x~ t !, ~1a!

Y~ f !5H~ f !X~ f !, ~1b!

and

Gyy~ f !5uH~ f !u2Gxx~ f ! ~1c!

where* denotes convolution,h(t) is the impulse response
H( f )5Gxy( f )/Gxx( f ), Gxy is the cross spectrum, andGxx
andGyy are the autospectra. InsertingH( f ) into Eq.~1c! and
normalizing byGyy( f ), one obtains the coherence spectru
~called ‘‘coherence’’ or ‘‘ordinary coherence’’!

gxy
2 ~ f !,

uGxy~ f !u2

Gxx~ f !Gyy~ f !
[1. ~2!
4179 © 1997 The American Physical Society
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GivenH( f ), an ideal system is completely predictable an
hence, has unity coherence.

B. Coherence and predicted energy

In experiments, spectral quantities are estimated~denoted
by ‘‘ ˆ ’’ ! from ensemble averages. Theestimated Gˆ xx and
Ĝxy can be used topredict the output spectrum~‘‘~ ’’ indi-
cates prediction!

G̃yy5uĤu2Ĝxx5
uĜxyu2

Ĝxx

,

yielding thecoherence estimator

ĝxy
2 5

G̃yy

Ĝyy

5
uĜxyu2

ĜxxĜyy

. ~3!

Thus, the estimated coherence is a frequency-by-freque
ratio of the predicted to the measured output energies. M
over, sinceG̃yy is evaluated fromĜxx measurements at
different location, coherence is a measure ofspatial cou-
pling. High coherence~'1! indicates strong coupling, while
its difference from unity indicates the fraction of unpredic
able output energy, i.e., the loss of coupling. Further, si
uĤu25ĝ xy

2 Ĝyy/Ĝxx , time series prediction also depends
coherence. Note that the estimation errors can be arbitra
reduced given sufficiently large datasets@8# and need not
contribute significantly to coherence decay.~Henceforth, we
will drop the caret ‘‘ ˆ ’’ since all spectra discussed are e
timated.!

C. Comparison of coherence and correlation function

Correlation lengthj was used@1# to categorize dynamica
systems as ‘‘large’’~viz., spatiotemporal! or ‘‘small’’ ~viz.,
spatially coupled! when j/l;1 or j/l@1, respectively
~wherel is some dynamically significant length scale!. How-
ever, in spatially inhomogeneous systems~e.g., free shear
flows!, spatial growth rates and phase speeds of the var
instability modes differ, making correlation inadequate
coupling measurements. Consider the simple example
completely predictable one-dimensional spatiotemporal s
tem with inputu(x,t) and outputv(x,t)

u~0,t !5a cosv1t1b cosv2t,

and v~x,t !5c~x!cosv1t1d~x!cosv2t. ~4!

FIG. 1. Schematic of the nonlinear system model.
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Sinceu is at the originx50 andu5v for zero spatial
separation, the coefficientsa5c(0) andb5d(0). Using any
input u, andH( f ) derived from Eq.~4!, v can be predicted
exactly. Applying Eq.~3! to Eq. ~4! yieldsg uv

2 (v1)51 and
g uv
2 (v2) 51, irrespective of the spatial variation ofc andd.

Thus, coherence is unity at the relevant frequencies and
expected, the spatial coupling extends as far as the evolu
in Eq. ~4! is obeyed~i.e., to infinity, in principle!. Note that
even correlation will correctly indicate spatial coupling in
multimode system provided modal amplitude ratios a
phase differences do not vary in space~not the general case!.

Using the cross-correlation coefficient defined
ruv(t),[Ruv(t)/susv] ~whereRuv(t) is the cross correla-
tion, s are the standard deviations, and signalsu andv have
zero mean!, we obtain

ruvmax5
Ruv~0!

susv
5

~ac1bd!

@~a21b2!~c21d2!#1/2
<1.

Thus, ruvmax[1 only if c/a5d/b, i.e., each frequency is
~spatially! amplified identically. Note that, althoug
Guv( f ),2*2`

` Ruv(t)e
2 j2p f t dt, ~i.e., the cross correlation

and the cross spectrum are a Fourier pair!, additional infor-
mation is obtained fromg uv

2 ( f ) due to its normalization by
spectra~which differ at each frequency! rather than by con-
stants as inruv(t). A frequently used measure of spati
coupling—correlation lengthj—is based on correlation
which is expected to decay asruvmax(x);e2x/j; i.e., over a
distancex5j, r decays toe21 ~'37%! of its original value.
At what correlation value, and, hence, what value ofx/j, can
two signals still be considered coupled? This being an un
solved issue, we will restrict our comparisons of coheren
~in sec. III! to correlation only.

As a simple example, consider the amplitude evolution
c(x) and d(x) to be exponential and omit spatially depe
dent phases. Such exponentially growing amplitudes
commonly found in the initial~instability-dominated! re-
gions of shear flows such as mixing layers and jets@4#. Con-
sider coherence for spatially growing waves~Fig. 2! with
a/b510 andc/d50.5 atx/l52, typical of amplitude ratios
~of a fundamental frequency and its subharmonic! observed
in free shear flows@9#. Again, coherences at both frequenci
remain unity throughout the domain, whileruvmax rapidly

FIG. 2. Correlation decay for a fully coupled spatially develo
ing system, withj/l51 indicating spatiotemporal dynamics.
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decays, withj/l'1, suggesting a limited spatial extent
coupling even when the dynamics are completely pred
able.

Downstream~relative! shifts among component waves
different frequencies in dispersive systems also causes
correlation at all time delays. However, since coherence o
depends on phase variations~from one realization to another!
at each frequency, it can accurately detect spatial couplin
such systems.

D. Coherence decay

Coherence can be less than unity due to measurem
noise, unmeasured uncorrelated additional inputs, or non
earity @8#; since measurement noise can be minimized,
effects will not be considered here. Expanding Eq.~3! in
terms of ensemble-averaged Fourier spectra and substit
amplitude and phase decompositions of the formXk
5xkexp(ifxk

), Yk5ykexp(ifyk
) and fk5fyk

2fxk
, we can

isolate the effects of amplitude and phase jitter on cohere
~By ‘‘jitter’’ we mean random variations of a dynamica
variable.!

To study amplitude jitter, we fix the phase differencefk
in all realizations and obtain

gxy
2 5

^xkyk&
2

^xk
2&^yk

2&
<1, ~5!

where the ensemble averages are defined
^uk&51/N( k51

N uk , k is the realization number andN is the
ensemble size. This becomes an equality ifyk5rxk for all k;
i.e., the ratior of the output to input amplitudes can va
with frequency but must be fixed for all realizations~in con-
trast to the requirement thatr5constfor all frequenciesfor
ruvmax[1!. As a simple example, assuming thatyk5r kxk and
r k is distributed uniformly on the interval@0,1#, uncorrelated
with xk , with mean m r and variance s r

2, we get
g xy
2 5m r

2/(m r
21s r

2), which decays with increasings r
2.

To examine phase jitter, we hold amplitudesxk and yk
fixed and obtain

gxy
2 5u^eifk&u25u^cosfk1 i sinfk&u2<1. ~6!

Note that it is thedifferencefk , not the individual phases
fyk

or fxk
, which affects coherence. Coherence is unity o

if fk is constant in all realizations. Considerfk5f1suk ,
with constantf and a random variableuk distributed uni-
formly on the interval@0,2p#. Here,g xy

2 5sin2(ps)/(ps)2,
which decays to zero ass→1.

E. Nonlinear model

For nonlinear systems, ordinary coherenceg xy
2 may fall

below unity, but this does not necessarily imply that the d
namics are less predictable. Coupling can be measured u
a nonlinear system model~Fig. 1! and its coherences@5#. The
procedure outlined below is applicable to systems of a
trary order; after constructing the system model, suffici
moments and inner products can be taken to extract
transfer functions and/or coherence. However, the m
ematical complexity and computational expense grow d
tically with increasing order. We will restrict our discussio
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to second order~i.e., to triad interactions!; higher-order com-
putations are justified only if~i! knowledge about the dynam
ics ~e.g., the governing equations! indicates their presenc
~e.g., in surface gravity waves! or ~ii ! second-order results
are substantially different from linear coherence.

The quadratic system model is

Y~ f !5L~ f !X~ f !1 (
f1> f2

Q~ f 1 , f 2!X~ f 1!X~ f 2!, f 11 f 25 f .

~7!

It is represented in terms of the linear and quadratic tran
functionsL( f ) andQ( f 1 , f 2), respectively; the first term on
the right side represents linear energy transfer to the outp
f , while the second term represents the cumulative contr
tion of all triad interactions to the output atf . Owing to
symmetry with respect tof 1 and f 2 , the summation in Eq.
~7! is restricted tof 1> f 2 .

Multiplying Eq. ~7! by its complex conjugate, ensemb
averaging and then normalizing byGyy( f ) yields thetotal
coherence

gT
2~ f !5

1

Gyy~ f !
F uL~ f !u2Gxx~ f !

1 (
f1> f2

uQ~ f 1 , f 2!u2D~ f 1 , f 2!

12 ReH L~ f ! (
f1> f2

Q* ~ f 1 , f 2!A* ~ f 1 , f 2!J G<1,

~8!

where A( f 1 , f 2)5^Xk( f 1)Xk( f 2)Xk* ( f )& ~the autobispec-
trum! andD( f 1 , f 2)5^uXk( f 1)Xk( f 2)u

2&; this assumes negli
gible fourth-order momentŝXk( f 1)Xk( f 2)Xk* ( f 18)Xk* ( f 28)&
~with f 11 f 25 f 181 f 285 f ), unlessf 15 f 18 @5#. Estimation er-
rors are neglected for large ensembles.

Although each term in Eq.~8! is subject to~possibly mis-
leading! physical interpretation, to measure spatial coupli
we need onlyg T

2( f ). As in the linear system, total coherenc
indicates the predictability of output energy using measu
input energy; when the input and output measurements
spatially separated,total coherence is a measure of spati
coupling.

Taking moments of Eq.~7! with respect toX* ( f ) and
X* ( f 18)X* ( f 28), and ensemble averaging gives two coupl
equations forL andQ, respectively@5#, which can be sub-
stituted into Eq.~8! to obtain the following newexplicit for-
mula for total coherence

gT
2~ f !5g2~ f !

u12 (
f1> f2

h~ f 1 , f 2!u2

12 (
f1> f2

a2~ f 1 , f 2!

1 (
f1> f2

b2~ f 1 , f 2!,

~9!

where g2( f ) is the ordinary coherence
a2( f 1 , f 2)5[ uA( f 1 , f 2)u

2/D( f 1 , f 2)Gxx( f )] ~the autobicoher-
ence!, h( f 1 , f 2)5[C* ( f 1 , f 2)A( f 1 , f 2)/D( f 1 , f 2)Gxy( f )],
C( f 1 , f 2)5^Xk( f 1)Xk( f 2)Yk* ( f )& ~the cross bispectrum!,
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andb2( f 1 , f 2)5[ uC( f 1 , f 2)u
2/D( f 1 , f 2)Gyy( f )] is the cross

bicoherence. Note that this new result does not require c
putationally intensiveL or Q calculations to evaluateg T

2( f )
@5,10#. Further, ifA( f 1 , f 2).0, g T

2( f ) reduces to the sum o
g2( f ) and(b2( f 1 , f 2) ~simplifying computations consider
ably!. In fact, even in the presence of substantialA( f 1 , f 2),
further ~heuristic! analyses suggest that a sufficient conditi
for highg T

2( f ) is high values of bothg2( f ) and(b2( f 1 , f 2).
For negligible autobicoherence, analytical results for to

coherence decay can be obtained, analogous to the li
case: fixed amplitude ratios and phase differences give
values of total coherence, and amplitude or phase jitter ca
its decay. Similar results are expected when autobicohere
is high, but analysis is difficult; some examples are exami
in Appendix B.

This completes the formulation of a spatial coupling me
sure~viz., g T

2! for a quadratically nonlinear system. In co
trast to prior methods, we provide an explicit and easily c
culable formula for g T

2. In Sec III, experimental
measurements of total coherence and correlation in an
cited circular jet flow are presented.

III. EXPERIMENTS IN A SPATIALLY
DEVELOPING FLOW: THE FORCED JET

We have experimentally investigated a spatially inhom
geneous system, a free jet with a top-hat exit profile in tr
sition from laminar to turbulent flow. The transition region
subject to several instabilities:~i! a primary Kelvin-
Helmholtz instability leading to the formation of axisymme
ric vortex rings ~‘‘vortex roll up’’ !, ~ii ! subsequent two-
dimensional subharmonic instabilities leading to the mer
of neighboring vortices~vortex ‘‘pairings’’!, and ~iii ! three-
dimensional instabilities leading to vortex fragmentation a
transition to turbulence. The jet was acoustically excited a
single frequencyf . The dimensionless control parameters a
the forcing amplitudeaf[uf8/Ue and the forcing frequency
StD[fD/Ue : uf8 is the centerline rms-velocity fluctuation a
f , Ue is the centerline exit velocity, andD is the jet diameter.
Two periodic and two low-dimensional chaotic attracto
were found over large regions in the parameter space.
experimental facility and procedures, the phase diagram,
attractors’ invariants and transitions between dynam
states are extensively discussed in@11,12#.

Spectral dynamics. Of particular importance~to techno-
logical processes such as mixing and aerodynamic noise
eration! are the formation and pairings of vortices. While t
fundamental frequencyf ~associated with vortex roll up! is
externally forced, the vortical interactions~and, hence, the
associated subharmonic and quarterharmonic frequencief /2
and f /4! are driven by feedback from vortex pairings@13#,
i.e., are self-excited. The spatially growing waves associa
with these frequencies have linear regions in which th
grow exponentially at different rates~evolving at different
phase speeds!, followed by nonlinear regions where the
saturate at different amplitudes and grow or decay due
self-interactions and cross-interactions. The saturation of
fundamental is physically realized by vortex roll up; pairin
result from the~nonlinear! subharmonic resonance phenom
enon, where a fundamental and its subharmonic interac
reinforce the subharmonic~i.e., f1(2 f /2)5 f /2! @9#. Thus,
-
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the relevant and dominant frequencies are the fundame
the subharmonics, and the sidebands generated by det
feedback~i.e., when feedback is not exactly atf /2 and f /4!
@12#. Although the dynamics of this physical system can
relatively simple~nominally two-dimensional and limited to
as few as three, or even two, instability modes!, this proto-
typical flow embodies several important and common f
tures of spatiotemporal dynamical systems: spatially evo
ing, inhomogeneous, and dispersive, with linear a
nonlinear instabilities. In the following we briefly describ
the salient features of a periodic and a chaotic state cho
for the present study.

The periodic state, stable double pairing~SDP!, was
found for 0.01<af<0.20 and 1.05<StD<1.60. Spectral
peaks atf , f /2, andf /4 ~see Fig. 3, recorded downstream
the first pairing location, atx/D>1.75! are due to periodic
vortex roll up followed by a periodic first pairing and then
periodic second pairing of vortices downstream. For SD
the first and second pairings occur approximately atx/D
'1.5 and at x/D'2.5, respectively@11,12#. Since the
sources off /2 andf /4 at the jet exit are presumably feedba
from pairings, it is reasonable to expect that spatial coupl
will extend at least as far as the pairing locations~and per-
haps beyond, unless there are significant effects from n
instabilities whose origins were not measured; see Sec. II

A chaotic state~the ‘‘quarterharmonic chaotic attractor,
QCA! is found in the range 0.008<af<0.02 and 1.1<StD
<1.25. The power spectrum~Fig. 4! recorded near the firs
vortex pairing location (x/D>2) shows peaks atf and two
sidebands around the subharmonic~f l5 f /22D f ,
f h5 f /21D f !, indicating ~almost! periodic subharmonic
modulations, i.e., a first pairing whose location chang
~nearly! periodically in space@12#. The broadband centere
at f /4 is due to chaotic second pairing occurring farth
downstream. The waves corresponding to the modula
subharmonic and the broadband quarterharmonic h
longer ~than in SDP! spatial evolution times and are resul
of detuned pairing feedback@12#. Correspondingly, the firs
pairing location for QCA is delayed tox/D'2, and the sec-

FIG. 3. Power spectrum for a periodic state, stable double p
ing ~SDP!, with acoustic forcing atf only, displaying dynamically
significant spectral peaks at the fundamentalf , the subharmonicf /2
and the quarterharmonicf /4, recorded atx/D>1.75.
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ond pairing may occur as far asx/D'4.
Below we present cross correlation and total cohere

for SDP ~at af>2.4%, StD>1.2! and QCA ~at af>1.4%,
StD>1.2!, measured using hot-wire velocity probes; data
quisition was performed using a 12-bit analog-to-digital co
verter on a Masscomp MC6650 computer. The refere
probe was positioned near the jet exit (x/D'0) and dis-
placed radially by 0.2D, with long prongs to keep the prob
body out of the jet core~thus minimizing probe interferenc
and wakes!; a second probe~aligned with the jet centerline!
was traversed downstream at intervals ofDx/D>0.25.

A. Cross correlation

The peak cross-correlation coefficientrx1x2max for both at-
tractors decay rapidly~Figs. 5 and 6!, falling below 0.5 by
x/D'1. This decay is primarily due to rapid spatial vari
tion of the ratio of the fundamental and the subharmo
amplitudes~see Sec. II and the amplitude plots in@11#!. Cor-

FIG. 4. Power spectrum for a chaotic state, quarterharmo
chaotic attractor~QCA!, with acoustic forcing atf only, showing
dynamically significant spectral peaks at the fundamentalf , the
lower and higher sidebands around the subharmonic (f l , f h) and the
center frequency of the broadband quarterharmonicf /4, recorded at
x/D>2.

FIG. 5. Spatial variation of total coherenceg T
2( f ) and the peak

correlation coefficientrx1x2max
for SDP; highg T

2( f ) at all frequen-
cies indicates strong coupling at least up tox/D'4, while low
values ofrx1x2max

~by x/D'1! spuriously indicates the loss of cou
pling.
e

-
-
e

c

relation diminishes well before the minimum expected co
pling distance ofx/D'2.5 ~i.e., the second pairing location!.

B. Total coherence

To analyze total coherenceg T
2 @evaluated using Eq~9!#

for the dynamically significant frequencies noted in t
power spectra of SDP and QCA, 400 records of 10
samples were averaged with a frequency resolution of 2
~see Appendix A for further details!.

SDP. Total coherences atf , f /2 and f /4 remain high
~>0.8! as far asx/D'4, 5 and 7, respectively,~Fig. 5!,
indicating spatial couplingwell beyond the second pairin
location. As previously noted, this is not surprising provid
new unmeasured events do not occur, i.e., events whose
gins are underresolved or undetected at the first loca
~e.g., three-dimensional secondary instabilities!. Although
theoretically bound by unity,g T

2( f /2) andg T
2( f /4) slightly

exceed unity at a few locations~e.g., atx/D54!, apparently
because of insufficient spectral averaging~see Appendix A!.
From cross bispectra~not shown!, the most significant qua
dratic interactions for SDP were found to be those betw
the fundamental and the subharmonic„i.e., f1(2 f /2)5 f /2…
and those between the subharmonic and the quarterharm
„i.e., f /21(2 f /4)5 f /4…, culminating in the first and secon
vortex pairings, respectively@9#.

QCA. Total coherences atf , the lower sidebandf l and the
higher sidebandf h frequencies~shown in Fig. 6! remain
above 0.8 as far as 3<x/D<5, the region where chaotic
second pairing is usually completed@12#. Again, there are
slight excursions above unity in the values ofg T

2( f l) and
g T
2( f h). The dynamically significant quadratic interaction

seen~in the bispectra, not shown here! are those of~i! f and
f h ~i.e., f2 f h5 f l!, ~ii ! f and f l ~i.e., f2 f l5 f h!, and~iii ! f l
and f h with frequencies in the broadband surroundingf /4
~e.g., f l2 f /45 f /42D f or f h2 f /45 f /41D f !; owing to the
broadband surroundingf /4, a coarser frequency resolution o
9 Hz was chosen around that frequency for computatio
High g T

2 at all significant frequencies up tox/D>4 indicate
strong spatial coupling, even in the presence of chaotic
namics.

High values ofg T
2 over a large region for both periodi

and chaotic vortex dynamics indicate that the transitional
displays temporal, rather than spatiotemporal, dynam
Cross-correlation results spuriously imply a much sma

ic

FIG. 6. Spatial variation of total coherenceg T
2( f ) and the peak

correlation coefficientrx1x2max
for QCA; nominally highg T

2( f ) at
all frequencies indicates strong coupling at least up tox/D'4,
while rx1x2max

drops to very low values byx/D'1.
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coupled domain~i.e., x/D,1! as a result of spatial inhomo
geneities. Similar results were found in an excited mixi
layer as well@4#. The rapid drop ofg T

2 downstream~x/D.7
for SDP andx/D.5 for QCA! is evidence of spatiotempora
dynamics; possible mechanisms for such disorder are
cussed next.

C. Physical mechanisms of coherence decay

As addressed in Sec. II coherence decay~indicative of
coupling loss! can result from amplitude and/or phase jitte
However, the physical mechanism for such jitter may dif
among dynamical systems. In the following, some su
mechanisms are discussed in the context of jet flows; sim
arguments may apply to other open free shear flows as w
such as wakes and mixing layers.

Amplitude jitter. An example of how amplitude jitter ma
occur in a jet is illustrated in Fig. 7, where the spatial dev
opment of the amplitude of an instability mode~viz., Kelvin-
Helmholtz! is sketched for two realizations from an e
semble of different initial amplitudes; the saturatio
amplitudes of these modes are known to be relatively ins
sitive to the initial amplitudes@9#. The input amplitudeuk at
f is measured at the originx0 . In the first case, the outpu
fundamental spectral amplitudevk is measured atxl in the
linear range; hence, the ordinary coherence,g uv

2 51 ~assum-
ing constant phase shift atf betweenx0 and xl! since the
amplitude ratiovk/uk is constant in each realization@see Eq.
~5!#. In the second case, the output spectrum is measure
xnl in the nonlinear range, whereu has reached its saturate
valueusat . Here, the amplitude ratiousat/uk varies from one
realization to another, andg uv

2 ,1. Similar effects may occu
for the subharmonic and the quarterharmonic as well.

Phase jitter. Coherence can be affected by variations
the phasedifference~of individual frequency components! in
several ways; here, two such effects are illustrated by ex
ining the spatial development of a resonant subharmo
wave~Fig. 8! in a jet flow. When the fundamental wave~not
shown! reaches a critical amplitude atx0 , it resonates non-
linearly with and reinforces the subharmonic, thus modifyi
the subharmonic spatial growth rate~depending onu, the
phase difference between the two waves! @9#. First, consider
the coherence atf /2 between the signals atx0 andx1 : phase
jitter will be absent if the subharmonic phase speed is in
pendent ofu. Nevertheless,u variations ~due to detuned
feedback! result in amplitude jitter atx1 and, hence, coher
ence decay. In contrast, there is no amplitude jitter betw

FIG. 7. Spatial development of an instability amplitude for
pair of realizations, illustrating an amplitude jitter mechanism
free shear flows.
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x0 andx2 , but the phase after saturation~i.e., atx2! may not
be linearly related to the phase prior to the onset of re
nance~i.e., atx0!. This phase jitter will also result in coher
ence loss.

Phase jitter may also be caused by the developmen
three dimensionality. The three-dimensional effect sketch
in Fig. 9 ~showing two realizations of advecting rectilinea
vortices! is analogous to azimuthal instabilities of ring vo
tices, but is more easily understood in a planar configurati
In both realizations, the trailing vortex is rectilinear~or
nearly so!, but a spanwise instability~of fixed wave number
but arbitrary phase! has grown on the leading vortex as
moved downstream. Coherence at the vortex passage
quency will fall below unity since the phase shiftfk between
u(t) andv(t) varies from one realization to the next. Not
that, in this case, the phase jitter is due to an unknown in
~viz., the disturbances which trigger the three dimension
ity!. If the spanwise disturbance is present on the upstre
vortex, even at low amplitudes, additional spanwis
separated probes at the upstream location might provide
ficient information to make the downstream distortion pr
dictable~using multiple and partial coherences@8#!.

IV. CONCUDING REMARKS

Total coherenceg T
2( f ) accurately identifies coupling in

spatiotemporal dynamical systems, particularly inhomog
neous ones. Coherence is applicable to homogeneous
tems as well; when dynamics are dominated by a single

FIG. 8. Spatial development of the amplitude of a resonant s
harmonic wave for different phasesui , illustrating mechanisms for
amplitude and phase jitter in free shear flows.

FIG. 9. Illustration of phase jitter due to random thre
dimensional disturbances on rectilinear vortices in a plane f
shear flow; the downstream phase at the vortex passage frequ
@in v(t)# is different in the two realizations.
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quency, coherence and correlation results are identical;
multiple modes, coherence can identify frequencies and
teractions responsible for coupling decay. Since cohere
can be interpreted as the predictable energy fraction,
appears to be the first method for measuring predictabilit
multimode spatiotemporal systems. Consequently, this re
is an important step in addressing the challenging problem
modeling and controlling technologically relevant spatiote
poral ~open! flows.

To demonstrate the practical feasibility of coherence, a
spatial coupling measure, we measured total coherence
circular jet. The results indicate large spatially coupled
gions ~extending from 4 to 7 jet diameters!, implying high
predictability of dynamics~using single-point measurement!
in these flow regions. We have demonstrated that mislea
estimates of spatial coupling can be inferred fro
correlation-based measures.

Diminished coherence comes from additional unmeasu
inputs ~or interactions!, higher-order nonlinearity or mea
surement noise; these manifest themselves as jitter in am
tudes and phases of the measured dynamical varia
Mechanisms for such jitter depend on the physical sys
under consideration, e.g., the onset of secondary instabil
in Rayleigh-Bénard convection@14#, transverse instabilities
in film flows @15#, three dimensionality in open shear flow
@16#, higher-order nonlinearities, or transition to turbulenc
In the first three cases, the apparent loss of predictability
in principle, be recovered by judicious placement of ad
tional sensors; increasing the order of the system model
capture higher-order nonlinearities. In deterministic syste
the only ‘‘true’’ sources of unpredictability~given an ad-
equate system model! are unmeasured or underresolved
puts, specifically, small fluctuations~e.g., changes in initia
conditions! amplified by instabilities and/or temporal or sp
tiotemporal chaos.
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APPENDIX A: COHERENCE COMPUTATIONS

Theg T
2( f ) estimation using Eq.~9! is made quite difficult

by two problems: noise and spectral leakage. The sum
tions in Eq.~9! contain many terms~up to 512 here!, depend-
ing on the frequency resolution. Noise and random estim
tion errors at all frequencies cause residual values wh
accumulation yield poor estimates ofg T

2( f ). Since the ran-
dom error for spectral estimation scales asN21/2 ~whereN is
the ensemble size!, the cumulative error can be significa
even whenN is large~e.g., 102–104!; to minimize these er-
rors, we used a threshold of (2/N)1/2 on all spectra and
bispectra. Data windowing causes leakage of coherent
ergy into frequencies neighboring significant coherence
bicoherence peaks, causing summations including these
quencies to be erroneously high. After testing different w
dows, we found rectangular windows to have minimal coh
ent sideband leakage@17#.

Autobicoherence was computed using 200 realization
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a synthetic signal with significant energy at a single tria
f 11 f 25 f , and low-amplitude random noise. The autobic
herence sumS5( f1> f2

a2( f 1 , f 2) is ideally equal to unity.
This sum was evaluated after applying rectangular (R) and
Hamming (H) windows, yieldingSH54.21 andSR52.04
@with a2( f 1 , f 2)H'1 at two frequencies around the tru
peak#. After applying thresholds,SH53.00 andSR51.00.
Although the noise contribution is reduced,SH is clearly still
in error ~due to spectral leakage!.

In processing the experimental data, it was found t
using a relatively small number of realizations~e.g., 100
records! for spectral averaging resulted ing T

2( f ) exceeding 1
~its theoretical upper bound!. In fact, even after the numbe
of realizations was increased to 400, such excursions w
not completely eliminated~evident in Figs. 6 and 7!. We
believe that these errors are attributable to noise. In prac
it may not always be possible to select a threshold wh
eliminates all noise while preserving all signal contribution
In general, increasing the number of realizations should
minish these excursions. For SDP atx/D>3.75, calculations
yielded g T

2( f /2)'1.14 using 100 realizations, bu
g T
2( f /2)'1.07 using 400 realizations. Also for SDP,

x/D>3.25, g T
2( f /4)'1.14 using 100 realizations, bu

g T
2( f /4)'0.992 using 400 realizations.

APPENDIX B: ANALYSIS OF TOTAL COHERENCE
WITH HIGH AUTOBICOHERENCE

As noted in Sec. II E, the causes of coherence decay
difficult to interpret when autobicoherence is high. To inve
tigate this, we used synthetic input and output signals~e.g.,
from spatially separated probes! of the following form.

u~ t !ux5x1
5akcos~v11fak!1bkcos~v2t1fbk!

1ckcos~vt1fck!1dkcos~vt1fdk!1nu~ t !

v~ t !ux5x2
5ekcos~vt1fek!1 f kcos~vt1f f k!1nv~ t !,

where v52p f , and nu(t) and nv(t) are low-amplitude
band-limited white noise~at least 50 dB belowv1, v2, andv
peaks!. For simplicity, the two signals are provided signifi
cant energy only at three frequencies.

The key effects we expect to capture in these sign
are ~i! linear energy transfer atv between thedk and f k
terms, ~ii ! autobicoherence atv11v25v using theak , bk
andck terms, and~ii ! quadratic energy transfer tov using the
ak , bk and ek terms. To ensure high autobicoherence,
amplitude ratio akbk/ck and the phase differenc
fck2fak2fbk are kept constant;a2( f 1 , f 2)'0.99 for all
cases. Pseudorandom number generators produced a
tudes and phases with uniform distribution in the rang

TABLE I. Effects of amplitude and phase jitter on coherences

Case No. Case type g T
2( f ) g2( f ) b2( f 1 , f 2)

I Fully coupled 0.999 0.999 0.999
II Amplitude jitter 0.715 0.460 0.389
III Phase jitter 0.386 0.322 0.285
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@0,1# and @0,2p#, respectively. At least 200 records of 102
samples were averaged with a 2 Hzfrequency resolution.

We consider three cases: full coupling, amplitude jitt
and phase jitter. For full coupling~see case I, Table I!, we
eliminate jitter by holding phase differences~f f k2fdk and
fek2fak2fbk! and amplitude ratios constant~dk/ f k and
akbk/ek! for each realization. As expected,g T

2( f )'1, indi-
cating strong coupling and hence nearly complete pred
ability of v(t). To investigate amplitude jitter~case II, Table
I!, we hold the phase differences constant, while the am
-

,

t-

li-

tude ratios have independent, random variations on the in
val @0,1#. The drop ing T

2( f ) indicates a loss of coupling. Fo
phase jitter~case III, Table I!, we hold amplitude ratios con
stant, anduk , hence, the phase differencesfk5suk , are al-
lowed random variations in the range@0,2p#, wheres50.6.
~As in Sec II D,s51 yields 0 for all coherences.! The low
g T
2( f ) indicates coupling decay, hence, poor predictability

v(t). For highg T
2( f ), notice that bothg2( f ) andb2( f 1 , f 2)

are high, while lowg T
2( f ) is associated with lowg2( f ) and

b2( f 1 , f 2).
ig-

o,
er

ett.

tto

ica-
@1# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys65, 851
~1993!.

@2# J. P. Gollub and R. Ramshankar, inNew Perspectives in Tur
bulence, edited by L Sirovich~Springer-Verlag, New York,
~1991!, p. 165.

@3# G. Mayer-Kress and T. Kurz, Complex Syst.1, 821 ~1987!.
@4# S. Narayanan and F. Hussain, J. Fluid Mech.320, 71 ~1996!.
@5# Ch. P. Ritz and E. J. Powers, Physica D20, 320 ~1986!.
@6# R. W. Miksad, F. L. Jones, and E. J. Powers, Phys. Fluids26,

402 ~1983!.
@7# M. Bonetti and J-P. Boon, Phys. Rev. A40, 3322~1989!.
@8# J. S. Bendat and A. G. Piersol,Random Data Analysis and

Measurement Procedures, 2nd ed.~Wiley-Interscience, New
York, 1986!.

@9# H. S. Husain and F. Hussain, J. Fluid Mech.304, 343 ~1995!.
@10# K. I. Kim and E. J. Powers, IEEE Trans. Acoust. Speech S
nal Process.36~11!, 1758~1988!.

@11# G. Broze and F. Hussain, J. Fluid Mech.263, 93 ~1994!.
@12# G. Broze and F. Hussain, J. Fluid Mech.311, 37 ~1996!.
@13# A. K. M. F. Hussain, H. S. Husain, K. B. M. Q. Zaman, J. Ts

M. Hayakawa, R. Takaki, and M. A. Z. Hasan, AIAA Pap
86-0235, 1986~unpublished!.

@14# G. Ahlers, D. S. Cannell, and V. Steinberg, Phys. Rev. L
54, 1373~1985!.

@15# J. Liu, J. D. Paul, E. Banilower, and J. P. Gollub, inProceed-
ings of the First Experimental Chaos Conference, edited by S.
Vohra, M. Spano, M. Schlesinger, L. M. Pecora, and W. Di
~World Scientific, Singapore, 1992!, p. 225.

@16# J. C. Lasheras and H. Choi, J. Fluid Mech.189, 53 ~1988!.
@17# This was suggested by E. J. Powers in a private commun

tion.


