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A paradoxical symmetry breaking —development of a unidirectional flow via thermal instability — is
predicted by an analytical solution for compressible convection near a point source of both heat and
gravity. Such a flow can propel a cosmic hot body (e.g., a protostar) in a molecular cloud. This convection
emerges at the critical Rayleigh number Ra � l�l 1 1� �2l�l 1 1� 1 1 1 3mV �2�g��g 2 1�, where l
is the number of flow cells, mV is the second-to-first viscosity ratio, and g is the specific heat ratio.
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1. Introduction.—This study is motivated by collimated
outflows observed in cosmic space. These outflows emerge
from young stars, double stars, dying stars, and galaxy
cores (whose masses range from 1022 to 109 times the
mass of the Sun), have lengths from 1021 to 106 times the
distance from the Sun to the nearest star, and have veloci-
ties ranging from a few km�s to relativistic [1–3]. The fact
that the outflows occur in a variety of objects and over a
large range of scales — and therefore seem to be a generic
phenomenon —inspired us to formulate a simple gas-
dynamics model. Differing from astrophysical flows
in many aspects, our model incorporates the following
important common features: (i) gravity, (ii) density
gradients, and (iii) energy flux from a central body. These
features alone appear sufficient for the development of
large-scale outflows.

Here we focus on the outflow formation via thermal
instability. As a diffuse molecular or/and dust cloud
collapses under its self-gravitational attraction, a massive
body (e.g., a protostar) emerges which constitutes the
placental material out of which a star or galaxy core
forms. We consider this process as quasisteady and
causing a gradual increase in the gravity force and in the
energy flux from the body to the ambient. The effects
of energy flux and gravity are characterized here by a
single dimensionless quantity—the Rayleigh number
Ra (buoyant/viscous force ratio). As the body becomes
more massive, Ra increases. The equilibrium state of rest
exists, where the gravity force is balanced by the radial
gradient of pressure. For small Ra, this rest state is stable,
but as Ra exceeds a critical value Racr, a flow emerges via
thermal instability.

To simplify analysis, we consider gravity due to the body
only and neglect that due to the cloud matter. Next, we use
a far-field approximation where the distance from the cen-
tral body r is much larger than the radius of the body (i.e.,
a point-source model). At such large distances, we con-
sider a cloud (filled with dust particles) optically thick and
use the Rosseland (diffusive) approximation for radiative
heat transfer [4]. Finally, we treat the cloud material as
a perfect gas whose viscosity is due to background turbu-
lence and magnetic field [1]. Thus, we come to the simple
0031-9007�01�87(26)�264301(4)$15.00
problem of onset of convection in a perfect gas near a point
source of both heat and gravity.

The problem is also of theoretical interest: the analyti-
cal solution obtained is the first for thermal convection in
a compressible fluid. In relation to the classical Rayleigh
solution [5] (for a horizontal layer of an incompressible
fluid), our solution describes the opposite limiting case:
the Rayleigh solution is valid for a narrow spherical shell
[6,7], while the outer-to-inner radius ratio is infinite in our
case (relevant for cosmic outflows). The compressible con-
vection problem here avoids the Boussinesq approximation
used in our prior study [8] (of collimated buoyant, conical
jets in an incompressible fluid) and addresses flows of Ke-
plerian (v � r21�2, typical of cosmic flows) and not of
conical �v � r21� similarity; v is the velocity vector.

2. Similarity family.—Consider steady flows of a com-
pressible fluid governed by

= ? �rv� � 0 , (1a)

r�v ? =�v � mDv 2 =p

1 m�mV 1 1�3�=�= ? v� 1 rg, (1b)

rcp�v ? =�T � kDT 1 F 1 �v ? =�p, (1c)

p � RrT , (1d)

where r is density, p is pressure, T is temperature, g is the
acceleration due to gravity, F is the viscous dissipation, m

is viscosity, mV is the ratio of the bulk (second) viscosity
[9] to m, k is thermal conductivity, R � cp 2 cy is the
gas constant, cp and cy are the specific heats at constant
pressure and volume, respectively. We assume that m, k,
cp , and cy are constant.

At g � 0, the system (1) permits the similarity
solutions,

r � rRr�u�rd, p � pRp�u�r2d22,

T � TRT �u�r22d22, (2a)

v � yRv�u�r2d21, v � �u, y� sinu, G� sinu� , (2b)

where �r, u, f� are spherical coordinates, r is the dis-
tance from the coordinate origin, u and f are polar and
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azimuthal angles, r � r�rR, rR is a length scale (e.g.,
the body radius), and d is an arbitrary real number. We
use rR , m, R, and rR to scale velocity, temperature, and
pressure:

yR � m��rRrR�, TR � m2��Rr2
Rr2

R�, and

pR � RrRTR � m2��rRr2
R� , (3)

where the index R denotes reference values (e.g.,
at r � rR).

At g fi 0, similarity solutions exist if g is proportional
to r22d23:

g � 2ergRr22d23, (4)

where gR is the gravity acceleration at r � rR , and er
indicates the outward radial direction.

Use of (2)–(4) reduces (1) to the system of ordinary
differential equations (dropping underline):

r0 � r�u 2 y0��y , (5a)

�1 2 x2�u00 � 2xu0 2 auu 2 buy0 2 �d 1 2�p
2 r��1 1 d�u2 1 yu0

1 �y2 1 G2���1 2 x2�� 1 Grr , (5b)

m�y00 � ayu0 2 p0

2 �byy 1 r�duy 1 yy0

1 x�y2 1 G2���1 2 x2�����1 2 x2� , (5c)

�1 2 x2�G00 � 2byG 2 r�duG 1 yG0� , (5d)

�1 2 x2�T 00 � 2xT 0 2 aTT

1 Pr��1 2 1�g� ��d 1 2�up 1 yp0 2 F�

2 r�2�d 1 1�uT 1 yT 0�� , (5e)

p � rT , (5f)

where x � cosu, the prime denotes differentiation with
respect to x, Gr 	 r

2
RgRr3

R�m2 is the Grashof number,
Pr 	 mcp�k is the Prandtl number, and g 	 cp�cy is the
specific heat ratio. Note that m� � �4�3 1 mV �, au �
m��d 1 2� �d 2 1�, bu � �8 1 d��3 1 mV �d 1 2�,
ay � 2 1 �mV 1 1�3� �1 2 d�, by � d�1 1 d�, and
aT � 2�1 1 d� �1 1 2d�.

Use of (5f) and p0 � r�T 0 1 T�u 2 y0��y� [resulting
from differentiating (5f) and substituting r0 from (5a)]
in (5b)–(5e) excludes pressure and makes the system re-
solved with respect to the highest derivatives. Since the
system (5) is of the 9th order, we need nine conditions.
The regularity requirements, for the velocity and stresses
to be bounded on the axis, x � 61, are
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y � 0 , (6a)

G � 0 , (6b)

2xu0 2 auu 2 buy0 2 �d 1 2�p

2r�1 1 d�u2 1 Grr � 0 , (6c)

2xT 0 2 aT T 1 Pr��1 2 1�g� ��d 1 2�up 2 F�

22r�d 1 1�uT� � 0 .

(6d)

They follow from (2b) resulting in (6a) and (6b), and from
(5b) and (5e) which are reduced to (6c) and (6d) by putting
x2 � 1. Since (6a)–(6d) must be satisfied at both x � 21
and x � 1, we have eight boundary conditions. The 9th
condition is a normalization of r, since there is a freedom
in choosing rR . We put rR to be the averaged density at
r � 1. This yields the integral condition,

Z 1

21
r dx � 2 . (6e)

Now the problem (5)–(6) is mathematically closed. An
important feature is that the conditions (6) do not guar-
antee that the density is bounded on the axis, because
the right-hand side of (5a) can be singular according to
(6a). Assuming that the velocity permits Taylor expansion
near x � 1,

y�x� � y0�1� �x 2 1� 1 O��x 2 1�2�,

u�x� � u�1� 1 O�x 2 1� ,

we find from (5a) that the leading term in the power expan-
sion for r�x� is C�1 2 x�a, where a � u�1��y0�1� 2 1
and C is a constant. For a fi 0, the density is either infi-
nite �a , 0� or zero �a . 0� at x � 1; both the cases are
unphysical. Thus, to obtain a regular solution, we need to
satisfy the additional condition, a � 0 [i.e., u�1� � y0�1�],
by choosing appropriate values of the parameters involved
(say, Pr or mV ).

This difficulty does not occur for an incompressible fluid
[8] where (5f) is omitted and d � 0 in (2). In that case,
(5a) becomes y0 � u; then use of y0 � u and y00 � u0

in (5c) reduces (5) to an 8th order system, and the con-
ditions (6a)–(6d) close the problem. We reiterate that the
compressible case does not reduce to the incompressible
one by putting r � const only; in addition, (5f) must be
omitted. The fact that the incompressible problem cannot
be treated as a specific case of the compressible problem
has significant consequences. In particular, the solution by
Landau [9] for a jet generated by a point source of mo-
mentum cannot be generalized for a compressible fluid.
Fortunately, in the linear problem of onset of convection,
the additional condition �a � 0� is satisfied automatically
as we show below.
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3. Keplerian convection.—For gravity due to a point
source, g is proportional to r22, i.e., d � 21�2 [see (4)],
and, therefore, jvj � �jgjr�1�2 � r21�2 (Keplerian simi-
larity). Now, (2a) yields that T � 1�r; this corresponds to
a point source of heat.

Thus, similarity solutions (2) with d � 21�2 describe
flows near a point source of both heat and gravity,

g � 2ergRr22, (7a)

T � TRr21, (7b)

where TR (temperature at r � 1) is now a control parame-
ter, characterizing the total heat flux from the point source.

First, we consider the equilibrium state of rest, i.e.,
v � 0. In this state, p, r, and T depend on r only. Us-
ing (1d) and (7b) we transform the reduced equation (1b),
dp�dr � 2rgRr22, into

dp�dr � 2p�RTR�21gRrRr21,

and, substituting for p from (2a) with d � 21�2, we ob-
tain the equilibrium condition,

gRrR � 3RTR�2 . (8)

This relation determines the gravity force that balances the
radial gradient of pressure induced by the heat source.

Thus, in the equilibrium state of rest, (2a) reduces to

T � TRTer21, r � rRrer21�2,

p � pRper23�2, (9)

where subscript e denotes the dimensionless equilibrium
values. Now (6a)–(6e) yield that

re � 1, pe � Te � 2Gr�3 . (10)

4. Infinitesimal disturbances of the equilibrium state.—
Now, we consider onset of thermal convection. To this
end we examine the disturbed quantities:

v � vd , r � rR�1 1 rd�r21�2,

p � pR�pe 1 pd�r23�2, T � TR�Te 1 Td�r21, (11)

where subscript d denotes disturbances.
Substituting (11) into (1) and neglecting nonlinear terms

with respect to disturbances, we obtain the system govern-
ing infinitesimal disturbances,

= ? �vr21� � 0 , (12a)

=�r23�2pd� � D�r21�2v� 1 �mV 1 1�3�=���= ? �r21�2v����

2 r25�23�2�pd 2 Td�er , (12b)

r3D�Tdr21� 1 uRa�1�g 2 1�3� � 0 , (12c)
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rd � 3� pd 2 Td���2Gr� , (12d)

where subscript d is omitted for velocity, and Ra 	 PrGr
is the Rayleigh number. We see that the equation (12d)
for rd is decoupled from (12a)–(12c); this resolves the
regularity problem (discussed in §2).

5. Critical Rayleigh numbers for convection onset.—
For axisymmetric swirl-free disturbances, using (2b) with
G 	 0, we reduce the system (12), to

y0 � u , (13)

L2Td 1 Ra�1�g 2 1�3�u � 0 , (14)

L2u � �1 1 3mV �2�u�2 1 3�2Td � 0 , (15)

where L2f 	 �1 2 x2�f 00 2 2xf 0. Applying the L2 op-
erator for (15) and substituting for L2Td from (14), we
deduce a single equation governing the radial velocity u,

L2�L2u 2 �1 1 3my�2�u�2� � uRa�3�g 2 1��2 .
(16)

Using boundary conditions (6), we find that solutions
of (16) are the Legendre polynomials, u � Pl�x�, l �
1, 2, . . . . The fact that the Legendre polynomials satisfy
the equation L2u � 2l�l 1 1�u allows us to obtain from
(16) an analytical expression for critical values of Ra:

Racr � l�l 1 1� �2l�l 1 1� 1 1 1 3mV �2�g��3 2 g�,

l � 1, 2, . . . . (17)

Now, (15) yields that

Td � Pl�x� �2l�l 1 1� 1 3mV �2��3 . (18)

Note that these neutral solutions have alternating sym-
metry with respect to the equatorial plane: u and Td are
symmetric functions of x for even l and antisymmetric for
odd l. Since we study the problem where there is no mass
flux from the source, the l � 0 case is excluded.

Integrating (13) under the condition y�1� � 0 gives
y�x�. Note that the condition y�21� � 0 is automatically
satisfied due to the symmetry with respect to x � 0 (see
the examples in the next section). The u projection of
(12b) follows from (5c) after neglecting the nonlinear
terms and putting d � 21�2 and u0 � y00:

12p0
d � �14 1 6mV �y00 1 3y��1 2 x2� , (19)

whose integration gives the pressure disturbance pd . Fi-
nally, the density disturbance follows from (12d). The con-
dition,

R1
21 rddx � 0, gives a value of integration constant

for (19).
6. Neutral modes for a few small values of Racr.
6.1 Unidirectional flow.—At l � 1 (one-cell convec-

tion), the critical Rayleigh number is minimal, Racr �
2�5 1 3mV �2�g��3 2 g�, and the neutral mode is
264301-3
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FIG. 1. Convection patterns for l � 1 (a), l � 2 (b), and
l � 3 (c).

u � x, y � �x2 2 1��2, Td � �5�3 1 mV�2�x ,

pd � �25�24 1 mV �2�x, rd � 215xPr��16Racr� .
(20)

We have normalized this linear solution by the condition
u�1� � 1.

6.2 Bipolar outflow.—The presence of the accretion disk
makes the radial velocity symmetric with respect to the
x � 0 plane. As (20) does not satisfy this requirement,
we consider the next case, l � 2 (two-cell convection),
where Racr � 6�13 1 3mV �2�g��3 2 g�, and the neutral
mode is

u � �3x2 2 1��2, y � �x3 2 x��2 ,

Td � �13�3 1 mV �2�u , (21)

pd � �27�8 1 mV �2�u, rd � 223uPr��16Racr�.

6.3. Flow patterns.— Convection cells are separated
by surfaces C � 0; C is the Stokes stream function.
According to the relations, yr � �rr2 sinu�21≠C�≠u

and yu � 2�rr sinu�21≠C�≠r, we get that C �
2y�x�r3�22mrR�3. Hence, C � 0 where y�x� � 0, i.e.,
the cells are separated by conical surfaces, u � const, and
the number of cells equals l. Flow patterns of the neutral
modes shown in Fig. 1 are symmetric with respect to both
the abscissa and the ordinate, z � r cosu.

7. Concluding remarks.—Our results provide an ana-
lytical solution for thermal convection in a perfect gas.
No analytical solution was reported so far presumably be-
cause the problem is significantly complicated without the
Boussinesq approximation (invalid for compressible con-
vection). In particular, there is a difficulty in satisfying
the regularity requirement for density disturbances (§2).
This difficulty is resolved here for the linear problem: by
excluding the density disturbances from the equations for
velocity, pressure, and temperature (12a)–(12c) and then
using (12d), density is rendered bounded. [Such simplifi-
cation is not obvious in the nonlinear problem, and further
studies are needed.]

Our solution predicts a striking symmetry-breaking ef-
fect: the development of a unidirectional buoyancy-driven
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flow from a spherically symmetric state. This flow ex-
erts thrust on the central body (as in a rocket); this con-
stitutes the main difference between the compressible and
incompressible cases. In the incompressible case, a unidi-
rectional flow cannot be driven by buoyancy [8]; in the
compressible case, the unidirectional flow is driven by
buoyancy, emerging via thermal instability at Racr fi 0
(§6.1). At first sight, the development of a unidirec-
tional flow from a spherically symmetric state seems para-
doxical. However, the underlying mechanism is due to
compressibility. Flow deceleration typically increases the
gas density. For example, in a steady pipe flow, where
ru � const, a decrease in velocity causes an increase in
density; this shifts the center of gas mass downstream. A
similar shift occurs in our problem and provides thrust.

The thrust results from pressure distribution. According
to the Boussinesq approximation (applied in the incom-
pressible case), density disturbances (linearly) depend on
temperature disturbances only. This produces no pressure
disturbance in the linear solution and, since pressure re-
mains spherically symmetric, no thrust. In contrast, in the
compressible case, pressure disturbances occur and they
are not spherically symmetric, being proportional to the ra-
dial velocity; see (20). The increased downstream pressure
pushes the central body upstream in the l � 1 flow. Thus,
our solution indicates that a massive cosmic body can be
propelled by a unidirectional thermal-convection flow.

An important feature of this solution is Keplerian simi-
larity that better fits cosmic flows, compared with conical
similarity in the incompressible case [8]. We view the
problem of onset of compressible convection near a point
source of heat and gravity as a prototypical model that
mimics the early stage of formation of large-scale outflows
accompanying gravitational collapse near massive bodies
in cosmic space.
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